Deploying Polycom® Unified Communications in RealPresence® Access Director™ System Environments
Trademark Information

POLYCOM® and the names and marks associated with Polycom's products are trademarks and/or service marks of Polycom, Inc., and are registered and/or common law marks in the United States and various other countries. All other trademarks are the property of their respective owners.

Java is a registered trademark of Oracle America, Inc., and/or its affiliates.

Patent Information

The accompanying product may be protected by one or more U.S. and foreign patents and/or pending patent applications held by Polycom, Inc.

End User License Agreement

Use of this software constitutes acceptance of the terms and conditions of the Polycom RealPresence Access Director system end-user license agreement (EULA).

The EULA for this product is available on the Polycom Support page for the product.
Contents

About This Guide .. 7
- Related Documentation ... 7
- Required Skills .. 7

Unified Communications with the Polycom® RealPresence® Access Director™ System Solutions .. 8
- Overview of the Polycom RealPresence Access Director System Solution ... 8
- RealPresence Access Director System Solution Deployment Models ... 10
 - Deployment with One Firewall and a Single Network Interface ... 10
 - Deployment in a DMZ Environment with One or More Network Interfaces ... 11
 - Deployment in a Two-box Tunnel Configuration ... 12
 - Other Deployment Models ... 12
- Supported Call Scenarios ... 12
 - Connecting Remote Users to the Enterprise (SIP and H.323) ... 13
 - Connecting Guest Users to the Enterprise (SIP and H.323) ... 13
 - Connecting Trusted Divisions or Enterprises (SIP and H.323) ... 13
- Products Tested in this Solution ... 14

Deploying the RealPresence Access Director System in a Corporate DMZ Environment ... 16
- Configure the DNS Service ... 17
 - Task 1: Create a DNS A record on the external DNS server ... 17
 - Task 2: Create a DNS SRV record on the external DNS server ... 17
 - Task 3: Create DNS A records on the internal DNS server ... 18
 - Task 4: Create DNS SRV records on the internal DNS server ... 18
 - Task 5: Validate DNS settings on the external DNS server ... 18
 - Task 6: Validate DNS settings on the internal DNS server ... 19
- Configure Firewalls and Ports ... 19
 - Outside Firewall Configuration ... 20
 - Inside Firewall Configuration ... 20
- Ports ... 20
- Install and Configure the RealPresence Access Director System ... 20
Task 1: Perform Basic Installation ... 20
Task 2: Configure Time Settings ... 20
Task 3: Activate the License .. 21
Task 4: Configure Network Settings .. 21

Configure the RealPresence Resource Manager System 22
Configure the RealPresence Access Director System 22
 Task 1: Configure System Certificates 22
 Task 2: Configure Automatic Provisioning (Recommended) 23

Configure the Polycom RealPresence DMA System 23
 Task 1: Enable SIP Device Authentication 23
 Task 2: Configure an External SIP Peer to Support SIP Open B2B Calls 24
 Task 3: Configure SIP Settings for Guest Users 25
 Task 4: Configure SIP Settings for Registered Users 26

Configure Polycom Endpoint Systems 27
 Task 1: Configure Polycom HDX Series Endpoints 27
 Task 2: Configure the Polycom Group Series System 27
 Task 3: Configure Polycom RealPresence Mobile or Desktop Endpoints 27

Configure the Polycom RealPresence Collaboration Server 28

Configure the Polycom RSS™ System 28

Deploying Two RealPresence Access Director Systems in a Tunnel Configuration
29

Configure the DNS Service for the Two-box Tunnel 30
Configure Firewalls and Ports ... 30
 Outside Firewall Configuration .. 30
 Inside Firewall Configuration ... 30

Install and Configure the RealPresence Access Director Systems 31
 Task 1: Perform Basic Installation 31
 Task 2: Synchronize the Time and Set the Time Zones 31
 Task 3: Activate the System Licenses 31
 Task 4: Configure Network Settings for the Tunnel Server 32
 Task 5: Configure Network Settings for the Tunnel Client 33
 Task 6: Configure Tunnel Settings on the Tunnel Server 34
 Task 7: Configure Tunnel Settings on the Tunnel Client 35
 Task 8: Configure System Certificates 36

Configure the RealPresence Resource Manager System 36
Configure the Polycom RealPresence DMA System 37

Configure Additional Polycom Components 37
Federation Between RealPresence Access Director Systems 38
 Federation in a SIP Environment ... 38
 Task 1: Create Additional DNS SRV Records on the External DNS Server 38
 Task 2: Configure the RealPresence Access Director Systems to Support Federated SIP Calls ... 39
 Task 3: Configure the Polycom RealPresence DMA Systems to Support Federated SIP Calls ... 39
 Federation in an H.323 Environment ... 40
 Task 1: Configure the RealPresence Access Director Systems to Support Federated H.323 calls ... 40
 Task 2: Configure the Polycom RealPresence DMA Systems to Support Federated H.323 Calls ... 41

Federation Between RealPresence Access Director and Other Systems 42
 Federation in an H.323 Environment with Polycom VBP-E Systems 42
 Task 1: Create an Additional DNS A Record on the External DNS Server 42
 Task 2: Create Additional DNS SRV Records on the External DNS Server 43
 Task 3: Configure the RealPresence Access Director Systems to Support Federated H.323 calls ... 43
 Task 4: Configure the Polycom RealPresence DMA System to Support Federated H.323 Calls ... 43
 Task 5 (Conditional): Configure the CMA system to support federated H.323 calls 44
 Task 6 (Conditional): Configure the VBP-5300E System to Support Federated H.323 Calls ... 45
 Task 7 (Conditional): Configure the VBP-5300E System in Embedded Gatekeeper Mode to Support Federated H.323 Calls ... 45

Verifying Deployment ... 46
 Verifying Access Proxy ... 46
 Verifying Call Success .. 46
 Verifying Certificates ... 47

Required Ports ... 48
 Management Ports ... 49
 From the WAN to the RealPresence Access Director System 49
 From the LAN to the RealPresence Access Director System 50
 From the RealPresence Access Director System to the WAN 50
 From the RealPresence Access Director System to the LAN 51
 H.323 and WAN Ports .. 52
 From the WAN to the RealPresence Access Director System 52
 From the RealPresence Access Director System to the WAN 53
From the WAN to the RealPresence Access Director System: H.323 B2B Calls 54
From the RealPresence Access Director System to the WAN: H.323 B2B Calls 55
H.323 and LAN Ports .. 57
From the RealPresence Access Director System to the LAN 57
From the LAN to the RealPresence Access Director System 58
From the RealPresence Access Director System to the LAN: H.323 B2B Calls...... 59
From the LAN to the RealPresence Access Director System: H.323 B2B Calls...... 59
SIP and WAN Ports .. 60
From the WAN to the RealPresence Access Director System 60
From the RealPresence Access Director System to the WAN 61
SIP and LAN Ports .. 62
From the RealPresence Access Director System to the LAN 62
From the LAN to the RealPresence Access Director System 63
Two-box Tunnel Communication Ports ... 64
From the RealPresence Access Director System Tunnel Server (DMZ) to the Tunnel Client (LAN) ... 64
From the RealPresence Access Director System Tunnel Client (LAN) to the Tunnel Server (DMZ) ... 64
Comparison of Two-box Tunnel Deployment and Standard Deployment Ports 65
From the WAN to the RealPresence Access Director System and the RealPresence Access Director System to the WAN. 65
From the LAN to the RealPresence Access Director System and the RealPresence Access Director System to the LAN. ... 65

Network Interface Configurations .. 66
Single Firewall Deployment with One Network Interface 66
DMZ Deployment with One or More Network Interfaces 67
Two-box Tunnel Deployment ... 68
Tunnel Server Network Interface Configuration 69
Tunnel Client Network Interface Configuration 70
About This Guide

This guide describes the Polycom® RealPresence® Access Director™ system solution and the process of deploying the products in the solution. The solution provides firewall traversal for the connections required for the supported deployment architecture, models, and user scenarios.

Related Documentation

This guide is meant to supplement the associated product documentation, not replace it. When deploying the systems in this solution, please have the product documentation accessible, specifically.

- Polycom RealPresence Access Director System Release Notes
- Polycom RealPresence Access Director System Getting Started Guide
- Polycom RealPresence Access Director System Administrator’s Guide

In addition, you will need the product documentation for the other infrastructure products required for this solution, including:

- Polycom RealPresence DMA System Operations Guide
- Polycom RealPresence Resource Manager System Operations Guide
- Polycom RealPresence Collaboration Server System Administrator’s Guide

Required Skills

Integrating Polycom infrastructure and endpoint systems with the RealPresence Access Director system requires planning and elementary knowledge of Polycom video conferencing and video conferencing administration.

This is not a training document. Polycom assumes those deploying this solution have a solid understanding of networking, firewalls, Network Address Translation (NAT), Domain Name Systems (DNS), H.323, and SIP concepts.
Unified Communications with the Polycom® RealPresence® Access Director™ System Solutions

In this solution, Polycom’s integrated suite of video conferencing systems includes the RealPresence Access Director system, which:

- Secures the borders to the enterprise IP network, the private VPN, and the Internet for video collaboration within and beyond the firewall.
- Enables high-quality and secure unified communications between divisions or enterprises, remote users, and guest users.
- Combines remote and B2B calling scenarios with SIP and H.323 (AVC and SVC) capabilities.
- Provides secure scalability for a mobile workforce.

The following topics describe the Polycom solution that includes the RealPresence Access Director system as the session border controller (SBC) for a site’s IP network.

- Overview of the Polycom RealPresence Access Director System Solution on page 8
- RealPresence Access Director System Solution Deployment Models on page 10
- Supported Call Scenarios on page 12
- Products Tested in this Solution on page 14

Overview of the Polycom RealPresence Access Director System Solution

The Polycom video infrastructure integrates with the RealPresence Access Director system to provide video conferencing management for remote, guest, and federated users with secure firewall traversal for all of the required connections. The following table describes the network traversal services this solution secures.

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPS Access Proxy</td>
<td>Enables remote and guest users via designated video endpoints to make HTTPS connections to the RealPresence Access Director system, which are then proxied to the internal Polycom® RealPresence® Resource Manager system, the RealPresence Content Sharing Suite, and other HTTPS application servers, including the Polycom® RealPresence® CloudAXIS™ Suite Experience Portal (MEA) and the RealPresence CloudAXIS Services Portal (WSP).</td>
</tr>
</tbody>
</table>

Polycom, Inc. 8
<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XMPP Access Proxy</td>
<td>Enables XMPP signaling from remote users via designated video endpoints to traverse the firewall to the internal XMPP servers you specify in configuration settings. XMPP access proxy also enables sending of outgoing XMPP signaling to remote endpoints.</td>
</tr>
<tr>
<td>LDAP Access Proxy</td>
<td>Enables remote and guest users via designated video endpoints to make LDAP connections to the RealPresence Access Director system, which are then proxied to the internal LDAP servers you specify in configuration settings. used by the RealPresence Resource Manager system, or other LDAP application servers.</td>
</tr>
<tr>
<td>Passthrough Reverse Proxy</td>
<td>Enables the RealPresence Access Director system to relay communication requests to servers not supported by the other types of access proxy protocols. This type of proxy configuration enables you to specify Web and other applications for which the RealPresence Access Director system performs minimal intermediation.</td>
</tr>
<tr>
<td>HTTP Tunnel Proxy</td>
<td>The HTTP tunnel reverse proxy allows external CloudAXIS Suite clients to accept meeting requests from internal enterprise users and join the meetings as SIP guest users via standard HTTP ports or non-standard ports that you configure as HTTP tunnel settings. An HTTP tunnel reverse proxy enables the RealPresence Access Director system to act as a Web proxy and provide a bidirectional SIP signaling and media relay connection for HTTP requests.</td>
</tr>
<tr>
<td>SIP Signaling</td>
<td>Enables:</td>
</tr>
<tr>
<td></td>
<td>• SIP signaling from remote users via designated video endpoints to traverse the firewall to the internal SIP server.</td>
</tr>
<tr>
<td></td>
<td>• Sending of outgoing SIP signaling from the RealPresence DMA system (the internal SIP server) to SIP endpoints that are not registered or are not members of a federated enterprise or division (SIP open B2B calling).</td>
</tr>
<tr>
<td></td>
<td>• Use of separate interfaces for external and internal SIP signaling messages</td>
</tr>
<tr>
<td></td>
<td>• Sending of outgoing SIP signaling to remote endpoints.</td>
</tr>
<tr>
<td></td>
<td>• Modifying SIP signaling to direct media through the media relay when required.</td>
</tr>
<tr>
<td></td>
<td>• SIP open business-to-business (B2B) calling, which supports calls from external SIP endpoints that are not registered or are not members of a federated enterprise or division.</td>
</tr>
<tr>
<td>H.323 Signaling</td>
<td>Enables:</td>
</tr>
<tr>
<td></td>
<td>• H.323 signaling from and to remote users via designated video endpoints to traverse the firewall to the internal gatekeeper.</td>
</tr>
<tr>
<td></td>
<td>• Use of separate interfaces for external and internal H.323 signaling messages</td>
</tr>
<tr>
<td></td>
<td>• Functionality to understand and manipulate all H.323 Annex O dialing messages.</td>
</tr>
<tr>
<td></td>
<td>• Functionality to route all H.323 messages from guest users to and from the internal gatekeeper.</td>
</tr>
<tr>
<td>Media Relay</td>
<td>Enables media from remote users and guest users residing in federated sites to traverse the firewall. The media relay functions as a Session Border Controller (SBC)-based relay.</td>
</tr>
<tr>
<td>Static Routing</td>
<td>Enables use of static routes to route traffic to the correct network destination. One or more static routes may be defined for each network interface</td>
</tr>
</tbody>
</table>
RealPresence Access Director System Solution Deployment Models

The RealPresence Access Director system solution can be deployed based on several different models:

- Deployment with One Firewall and a Single Network Interface on page 10
- Deployment in a DMZ Environment with One or More Network Interfaces on page 11
- Deployment in a Two-box Tunnel Configuration on page 12
- Other Deployment Models on page 12

See Network Interface Configurations on page 66 for diagrams of the deployment models and configuration details for the network interfaces.

Deployment with One Firewall and a Single Network Interface

In this simple model, the RealPresence Access Director system is deployed at the DMZ of the single firewall. All signaling, media, and management traffic use one network interface and IP address.
Deployment in a DMZ Environment with One or More Network Interfaces

In general, Polycom recommends that the RealPresence Access Director system be deployed in a corporate back-to-back DMZ; that is, deployed between an outside (also referred to as public or external) firewall and inside (also referred to as private or internal) firewall. Polycom Unified Communications with the RealPresence Access Director System Standard Deployment illustrates a standard deployment.

Figure: Polycom Unified Communications with the RealPresence Access Director System Standard Deployment

In this implementation:

- The outside firewall, which resides between the WAN (Untrust) and the RealPresence Access Director system in the DMZ, must be in Destination NAT mode. In this mode:
 - When inbound packets from the WAN pass through the firewall, it translates the destination IP address to that of the RealPresence Access Director system.
 - When outbound packets from the enterprise network pass through the firewall, it translates the source IP address to the outside IP address of the firewall system.
 - A static and direct 1:1 NAT mapping is recommended for the outside firewall.

- The inside firewall, which resides between the RealPresence Access Director system in the DMZ and the LAN (Trust), must be in Route mode.
 - In this mode, the firewall does not change the destination or source IP address, so no translation is required or supported.

Deployment in a DMZ environment takes advantage of the firewall’s security functionality. However, because all media and signaling traffic flows through the firewall, performance can be affected.
A RealPresence Access Director system that uses at least two network interfaces can be deployed in a “two-legged” configuration. In this scenario, SIP and H.323 signaling and media traffic are split between the interfaces to separate external and internal traffic.

Deployment in a Two-box Tunnel Configuration

Two RealPresence Access Director systems can be deployed to tunnel traffic to and from the inside network. In this model, one system acts as the tunnel server and is deployed in the corporate back-to-back DMZ. The other system serves as a tunnel client and is deployed behind the inside firewall. Communication between the tunnel server and the tunnel client is through UDP transmission.

![The RealPresence Access Director System Two-box Tunnel Deployment](image)

In this scenario, the tunnel server can forward all traffic through one open port on the inside firewall. If necessary, based on the firewall policy, the tunnel client can also send all traffic through one open port on the inside firewall.

Other Deployment Models

If you have a three-legged firewall (one with at least three network interfaces), the same firewall can separate the RealPresence Access Director system in the DMZ from both the internal LAN and the Internet. Note that in this configuration, not all firewall traffic goes through the RealPresence Access Director system.

The three-legged firewall configuration requires a static and direct 1:1 NAT mapping between the WAN (Untrust) and the DMZ, and Route mode between the DMZ and the LAN (Trust).

Network Interface Configurations on page 66 includes diagrams and the recommended network interface configurations supported for this solution.

Supported Call Scenarios

The deployment models for this Polycom solution support the following user scenarios:

- Connecting Remote Users to the Enterprise (SIP and H.323)
- Connecting Guest Users to the Enterprise (SIP and H.323)
- Connecting Trusted Divisions or Enterprises (SIP and H.323)
Connecting Remote Users to the Enterprise (SIP and H.323)

A remote user is an enterprise user with a managed Polycom SIP or H.323 endpoint that lies outside of the enterprise network. In this user scenario:

- Remote users can participate in video calls with other enterprise users as if they were inside the enterprise network.
- Remote users can receive calls as if they were inside the network.
- Remote users can receive management services including endpoint provisioning, user directory, and XMPP contact list and presence services, as well as SIP and H.323 calling, calendaring, and scheduling services.

All RealPresence Access Director system deployment models support this user scenario.

Connecting Guest Users to the Enterprise (SIP and H.323)

A guest user is a user with a non-managed SIP or H.323 endpoint that lies outside of the enterprise network. In this user scenario:

- Guest users can participate in video calls with division or enterprise users without being members of the site.
- Enterprise users can place H.323 calls out to guest users.
- Enterprise users can place SIP calls out to guest users.
- Guest users do not have access to any management services such as endpoint provisioning, user directory, XMPP contact list and presence services, or calendaring and scheduling services.

All RealPresence Access Director system deployment models support this user scenario.

Connecting Trusted Divisions or Enterprises (SIP and H.323)

Enterprise users from one division or enterprise can call enterprise users from another division or enterprise when:

- Both division or enterprise users have supported and managed SIP or H.323 endpoints.
- Both division or enterprise sites have implemented a RealPresence Access Director system or other access solution for federation.
- The federated sites are connected by a mutually trusted connection. For SIP systems, this trust relationship is a SIP trunk. For H.323 systems, this trust relationship is mutually neighbored gatekeepers.
- The sites have established and supported dial plans.

In this user scenario, each user has access to their site’s provisioning, directory, presence, and calling services, as well as contact lists.

All RealPresence Access Director system deployment models support this user scenario. Additionally, you must complete the deployment processes described in the appropriate section for your deployment model:

- Federation Between RealPresence Access Director Systems on page 38.
Federation Between RealPresence Access Director and Other Systems on page 42.

Products Tested in this Solution

The following products are supported in this RealPresence Access Director system solution.

<table>
<thead>
<tr>
<th>Polycom Product</th>
<th>Version</th>
<th>Function in Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycom RealPresence Access Director</td>
<td>3.1</td>
<td>Secures access to H.323 and SIP video services for small- to medium-sized federated enterprises.</td>
</tr>
<tr>
<td>Polycom RealPresence Distributed Media Application™ (DMA™) 7000</td>
<td>6.0.2</td>
<td>Functions as SIP proxy/registrar, H.323 gatekeeper, SIP and H.323 gateway, and bridge virtualizer.</td>
</tr>
<tr>
<td>Polycom RealPresence Resource Manager</td>
<td>8.0</td>
<td>Provisions and manages remote endpoints, and enables directory and presence services.</td>
</tr>
<tr>
<td>Polycom RSS™ 4000</td>
<td>8.1</td>
<td>Provides recording functionality for video, audio, and content.</td>
</tr>
<tr>
<td>Polycom RealPresence Collaboration Server 1500, 2000, and 4000</td>
<td>8.1</td>
<td>Provides bridge capability for SIP and H.323 conferences, including support for content over video.</td>
</tr>
<tr>
<td>Polycom RealPresence Collaboration Server 800s</td>
<td>8.1</td>
<td>Provides bridge capability for SIP and H.323 conferences, including support for content over video.</td>
</tr>
<tr>
<td>Polycom RealPresence CloudAXIS Suite</td>
<td>1.4.0</td>
<td>Provides two virtualized server components that enable users to schedule and participate in video conferences accessed from a web browser or other hardware and software video endpoints, including the Polycom RealPresence Mobile application.</td>
</tr>
<tr>
<td>Polycom HDX Series</td>
<td>3.1.0</td>
<td>Video conferencing endpoint systems.</td>
</tr>
<tr>
<td>Polycom RealPresence Mobile</td>
<td>3.0</td>
<td>Serves as client application for supported Apple® devices.</td>
</tr>
</tbody>
</table>
| Acme Packet® Net-Net ESD | 6.3 | Testing was carried out specifically with the Acme Packet Net-Net ESD-3820 platform running S-CX6.3.MR-2 GA (Build 385) software.
Other Acme Packet E-SBCs such as Net-Net ESD-4500, Net-Net ESD-SE and Net-Net ESD-VME also run the same line of C-series software. These other products can also be used in this Polycom RealPresence solution. |
<p>| Polycom Video Border Proxy (VBP) | 11.2.16 | In some solution models, provides border control functionality for federated enterprises. |</p>
<table>
<thead>
<tr>
<th>Polycom Product</th>
<th>Version</th>
<th>Function in Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polycom® CMA® system</td>
<td>6.2</td>
<td>In those solution models using a Polycom VBP-E border controller, the CMA system is behind the VBP system and provides management and H.323 gatekeeper functionality.</td>
</tr>
<tr>
<td>Polycom RealPresence Group 300</td>
<td>4.1.2</td>
<td>Video conferencing endpoint systems.</td>
</tr>
<tr>
<td>and Group 500</td>
<td>4.1.3</td>
<td></td>
</tr>
</tbody>
</table>
Deploying the RealPresence Access Director System in a Corporate DMZ Environment

This chapter describes the general configuration processes required for deploying the RealPresence Access Director system in a DMZ Environment with one or more network interfaces. The chapters that follow describe additional configuration processes required for the specific deployment models. The following cross-functional flow chart identifies the tasks you must perform.

See these topics for detailed information about each of the tasks.

- Configure the DNS Service on page 17
- Configure Firewalls and Ports on page 19
- Install and Configure the RealPresence Access Director System on page 20
Configure the DNS Service

This section describes creating domain name system (DNS) service records to enable this solution.

If you’re not familiar with DNS administration, the creation of various kinds of DNS resource records, and your enterprise’s DNS implementation, please consult with someone who is.

Task 1: Create a DNS A record on the external DNS server

Create a DNS A (address) record on the external DNS server to map the FQDN of the RealPresence Access Director system to its public IP address.

So if the RealPresence Access Director system has the FQDN name rpad.example.com, add an A record as follows.

```
rpad.example.com IN A 192.168.11.175
```

Where:
- **FQDN** = rpad.example.com
- **Class** = IN (Internet)
- **A** = Record type
- **192.168.11.175** = RealPresence Access Director system IP address

Task 2: Create a DNS SRV record on the external DNS server

Create a DNS service record (SRV record) on the external DNS server to map the SRV service address for endpoint provisioning to the FQDN of the RealPresence Access Director system. The SRV record is required by the Auto Find Provisioning Server feature of the RealPresence Mobile system.

- If the RealPresence Access Director system has the FQDN name rpad.example.com, add an SRV record as follows.

```
_cmaconfig._tcp.example.com. IN SRV 0 100 443 rpad.example.com.
```

Where:
- **Service** = _cmaconfig
- **Protocol** = _tcp
- **Priority** = 0
- **Weight** = 100
- **Port** = 443
Host offering this service = rpad.example.com

Task 3: Create DNS A records on the internal DNS server

Create three DNS A records on the internal DNS server as identified in the following sections.

The RealPresence Resource Manager system and the RealPresence DMA system in the internal network each need one A record to map their FQDNs to the IP address of the internal DNS server. In addition, the RealPresence Access Director system can use a specified FQDN as the provisioning server (access proxy configuration), SIP server, or gatekeeper (SBC setting). For example:

1. If the FQDN of RealPresence Resource Manager system is rprm.example.com, and its IP address is 10.22.202.134, create an A record:

 rprm.example.com IN A 10.22.202.134

2. If the FQDN of the RealPresence DMA system is dma.example.com, and its IP address is 10.22.120.126, create an A record:

 dma.example.com IN A 10.22.120.126

3. If the FQDN of RealPresence Access Director system is rpad.example.com, and its IP address is 10.22.210.111, create an A record:

 rpad.example.com IN A 10.22.210.111

Task 4: Create DNS SRV records on the internal DNS server

The RealPresence Resource Manager system requires a DNS SRV record on the internal DNS server to dynamically provision endpoints. The DNS SRV record maps the SRV service address to the FQDN of the RealPresence Resource Manager system.

- If the FQDN of the RealPresence Resource Manager system is rprm.example.com, and its IP address is 10.22.202.134, create an SRV record as follows:

 _cmaconfig._tcp.example.com. IN SRV 0 100 443 rprm.example.com.

The RealPresence DMA system requires several DNS SRV records on the internal DNS server to map the SRV service address for several services (SIP/TCP, SIP/UDP, and SIP/TLS) to the FQDN of the RealPresence DMA system.

- If the FQDN of the RealPresence DMA system is dma.example.com, and its IP address is 10.22.120.126, create these SRV records:

 _sip._tcp.example.com. IN SRV 0 100 5060 dma.example.com.
 _sip._udp.example.com. IN SRV 0 100 5060 dma.example.com.
 _sip._tls.example.com. IN SRV 0 100 5061 dma.example.com.

Task 5: Validate DNS settings on the external DNS server

The following steps use the Windows `nslookup` commands as an example. The procedure is similar on Mac and Linux.

To validate the DNS settings on the external DNS server

1. From a Windows computer located on the Internet network, open a command line.
2 Type `nslookup rpad.example.com` to check the A record of the RealPresence Access Director system. The response should include the corresponding RealPresence Access Director system's public IP address.

3 Type `nslookup -type=srv _cmaconfig._tcp.example.com` to check the SRV record. The response should include the FQDN of each RealPresence Access Director system.

Task 6: Validate DNS settings on the internal DNS server

The following steps use the Windows `nslookup` commands as an example. The procedure is similar on Mac and Linux.

To validate the DNS settings on the internal DNS server

1 From a Windows computer located on the internal network, open a command line.

2 Type `nslookup rprm.example.com` to check the A record of the RealPresence Resource Manager system. The response should include the corresponding RealPresence Resource Manager system's IP address.

3 Type `nslookup dma.example.com` to check the A record of the RealPresence DMA system. The response should include the corresponding DMA system's IP address.

4 Type `nslookup rpad.example.com` to check the A record of the RealPresence Access Director system. The response should include the corresponding RealPresence Access Director system's internal IP address.

5 Type `nslookup -type=srv _cmaconfig._tcp.example.com` to check the SRV record of the RealPresence Resource Manager system. The response should include the FQDN of RealPresence Resource Manager system.

6 Type the following commands to check the SRV records of the RealPresence DMA system:
   ```
   nslookup -type=srv _sip._tcp.example.com
   nslookup -type=srv _sip._udp.example.com
   nslookup -type=srv _sip._tls.example.com
   ```
 Each response should include the FQDN of the RealPresence DMA system.

Configure Firewalls and Ports

Follow these guidelines for configuring your firewalls and ports.

- If you’re not familiar with firewall concepts and administration and your enterprise’s firewall implementation, please consult with someone who is.
- For greater security, Polycom recommends that you disable SSH and Web access connectivity from the Internet, and enable SSH and Web access connectivity from the LAN.
Outside Firewall Configuration

- Implement a WAN (untrusted) and LAN (trusted) configuration
- Configure 1:1 NAT
- Set interface mode to NAT
- Disable H.323 and SIP ALG (Application Layer Gateway)
- Disable any H.323 helper services on the firewall (for example, Cisco® H.323 Fixup).

Inside Firewall Configuration

- Implement a WAN (untrusted) and LAN (trusted) configuration
- Disable H.323 and SIP ALG
- Set interface mode to Route
- Disable the port NAT.
- Disable any H.323 helper services on the firewall (for example, Cisco® H.323 Fixup).

Ports

To enable firewall traversal for external clients, the RealPresence Access Director system uses ports for provisioning, presence, directory, call signaling, and media.

Outbound traffic from the RealPresence Access Director system uses source and destination ports from a range of port numbers (a port pool). The total number of ports available for use is based on the number of licensed calls on your system license (up to 10 ports per session).

Incoming traffic from external clients uses static ports you define in the RealPresence Access Director system user interface. See the Polycom RealPresence Access Director System Administrator’s Guide for instructions on configuring ports.

For detailed information on required ports, refer to Required Ports on page 48.

Install and Configure the RealPresence Access Director System

Task 1: Perform Basic Installation

Perform the basic installation and network configuration as documented in the RealPresence Access Director System Getting Started Guide.

Task 2: Configure Time Settings

After initial installation of the RealPresence Access Director system, the default time zone is GMT (UTC). After you launch the system for the first time, you must specify the time zone of your geographic location.

Polycom strongly recommends that you select the time zone of your specific geographic location, for example, America/Denver, instead of a generic GMT offset (such as GMT+7).
If you choose a generic GMT offset, the time displays with the Linux/Posix convention for specifying the number of hours ahead of or behind GMT. Therefore, the generic equivalent of America/Denver (UTC-07:00) is GMT+07, not GMT-07.

Consider the following information when configuring the time settings:

- Changing the time settings requires a system restart, which logs all users out of the system.
- Changing the time settings can affect the number of days available for a trial period license.
- If you plan to install an identity certificate provided by a certificate authority (CA), submit a certificate signing request to a CA server located in the same time zone as your system. If the time zones are different, or if you change the time zone after installing the CA certificate, the certificate may not be valid. If this happens, you must request and install a new certificate.

If you plan to use your system to support calls between endpoints in your enterprise and endpoints in a separate but federated (trusted) division or enterprise that has its own RealPresence Access Director system, both systems and the CA server should be in the same time zone. If the time difference between the two RealPresence Access Director systems and the CA server is too great, the TLS connection may fail.

To select the time zone of your geographic location

» Go to Admin > Time Settings > System time zone and select the time zone of your specific geographic location.

Task 3: Activate the License

To activate the license for your system, you must obtain an activation key code from Polycom Support at support.Polycom.com. For instructions, see the Polycom RealPresence Access Director System Administrator’s Guide.

To activate a license

1. Go to Maintenance > License.
2. Enter the Activation key for the license and click Update.

The system restarts.

Task 4: Configure Network Settings

You must configure the network settings for the RealPresence Access Director system based upon the deployment model you are implementing. For more information about the deployment models, see RealPresence Access Director System Solution Deployment Models on page 10. For more information about RealPresence Access Director system network settings, see the Polycom RealPresence Access Director Administrator’s Guide.

To configure the network settings

1. From your Web browser, enter the IP address of the RealPresence Access Director system and log into the user interface.
Go to Admin > Network Settings.

Click Configure Network Setting.

The General Network Settings that display are the settings configured during initial installation and first-time setup of the system.

Click Next and configure the network interface settings, binds, and static route settings for the different services (external and internal signaling, external and internal media, external and internal access proxy, and management).

Configure the RealPresence Resource Manager System

If you deploy your RealPresence Access Director system with a Polycom® RealPresence® Resource Manager system, the Resource Manager system can dynamically manage and provision the RealPresence Access Director system and all endpoints within the same site as the RealPresence Access Director system.

The list below provides a high-level summary of the tasks you must complete to configure the RealPresence Resource Manager system to add and provision a RealPresence Access Director system and endpoints. For detailed instructions, see The Polycom® RealPresence® Resource Manager System Operations Guide for your version of the RealPresence® Resource Manager system.

- Create a site for the RealPresence Access Director system
- Create an RPAD server provisioning profile
- Create a network provisioning profile for endpoints
- Create a provisioning rule and associate it with all related profiles
- Create a user account for the RealPresence Access Director system

Configure the RealPresence Access Director System

Once the RealPresence Resource Manager system has been configured to integrate with and provision the RealPresence Access Director system, you can finish configuring the RealPresence Access Director system, as described in the following tasks:

- Task 1: Configure System Certificates
- Task 2: Configure Automatic Provisioning (Recommended)

See the Polycom RealPresence Access Director Administrator’s Guide for detailed information about each of these tasks. The following sections provide specific information as it relates to this solution.

Task 1: Configure System Certificates

The RealPresence Access Director system is delivered with a self-signed certificate at installation. You can replace the self-signed certificate with a signed certificate issued by a certificate authority.
The RealPresence Access Director system certificate must be both a serverauth and clientauth certificate.

You should configure certificates before configuring automatic provisioning of the RealPresence Access Director system and before federating your RealPresence Access Director system with another enterprise. For more information about certificate signing requests and certificates, see the Polycom RealPresence Access Director Administrator’s Guide.

Task 2: Configure Automatic Provisioning (Recommended)

When integrated with a Polycom RealPresence Resource Manager, the RealPresence Access Director system connects to the RealPresence Resource Manager system to be provisioned with the information you entered when you configured the RealPresence Resource Manager system.

Specifically, automatic provisioning configures:

- An NTP server for system time
- SIP and H.323 signaling settings

To configure automatic provisioning on the RealPresence Access Director system

1. See the Polycom RealPresence Access Director Administrator’s Guide for detailed information about configuring automatic provisioning. Then go to Admin > Polycom Management System.

2. Enter the Login Name, Password, and RealPresence Resource Manager IP address for the RealPresence Access Director system provisioning user account, and click Connect.

When connected successfully to the RealPresence Resource Manager system, the RealPresence Access Director system is automatically provisioned.

Configure the Polycom RealPresence DMA System

Task 1: Enable SIP Device Authentication

Device authentication enhances security by requiring devices registering with or calling through the RealPresence DMA system to provide credentials that the system can authenticate. In turn, the RealPresence DMA system may need to authenticate itself to an external SIP peer or neighbored gatekeeper.

If your RealPresence DMA system is peered with other SIP devices, enabling SIP device authentication may cause inbound calls to the RealPresence DMA system from those SIP peers to fail. Multiple solutions exist for resolving these issues with dial plan and network design. If necessary, please contact your Polycom field representative.
All authentication configurations are supercluster-wide, but note that the default realm for SIP device authentication is the cluster’s FQDN, enabling each cluster in a supercluster to have its own realm for challenges.

IMPORTANT

If Device Authentication is enabled on the RealPresence DMA system, you must disable Use Endpoint Provisioning Credentials on the RealPresence Resource Manager system.

To enable SIP authentication for ALL internal and external endpoints

1. See the Polycom RealPresence DMA System Operations Guide for detailed information about enabling SIP device authentication. Then go to Admin > Local Cluster > Signaling Settings and in the SIP Settings section, select Enable authentication.

2. To add a device’s authentication credentials to the list of device credential entries that the Call Server checks, click Add and enter the user Name, Password, and Confirm Password credentials.

 These are the credentials you set up in the RealPresence Resource Manager system to enable endpoint provisioning. They provide authentication of the endpoint’s provisioning request.

To disable SIP authentication for a specific endpoint

1. Go to Network > Endpoints.

2. Select the endpoint for which to disable authentication.

3. Click Edit.

Task 2: Configure an External SIP Peer to Support SIP Open B2B Calls

To enable calls between enterprise users and external SIP endpoints that are not registered or are not members of a federated enterprise or division, you must add the RealPresence Access Director system as an external SIP peer on the RealPresence DMA system and then specify the default SIP contact ports on the RealPresence Access Director system for each transport protocol. When the RealPresence Access Director system receives a SIP request message on the default contact port from a SIP endpoint that is not registered or is not a member of a federated enterprise or division, the system routes the call to the appropriate destination.

To configure an external SIP peer on the RealPresence DMA system

1. See the Polycom RealPresence DMA System Operations Guide for detailed information about adding an external SIP peer. Then go to Network > External SIP Peer > Add.

2. In the External SIP Peer settings, enter the internal signaling IP address of the RealPresence Access Director system as the Next hop address.

3. In the Preliminary settings under Request URI options, select the format Use original request URI (RR).
4 Go to Admin > Call Server > Dial Rules > Add and in the Action field, select Resolve to external SIP peer. This enables the RealPresence DMA system to send an INVITE message out to the RealPresence Access Director system.

To configure the default local SIP contact port on the RealPresence Access Director system

The RealPresence Access Director system routes SIP open B2B calls only if you specify a valid default contact port for each type of transport.

1 See the Polycom RealPresence Access Director system Administrator’s Guide for details about configuring the default contact port, then go to Configuration > SIP Settings.

2 Enter the default contact port the RealPresence Access Director system uses to receive SIP request messages from SIP endpoints that are not registered or are not members of a federated enterprise or division. For each type of transport (TCP, UDP, TLS), you can specify any external port not in use as the default contact port. If you are deploying a RealPresence Access Director system for the first time, the default contact ports have been pre-configured as follows:
 - TCP/UDP: 5060
 - TLS: 5061

Only one default contact port can be specified for each type of transport.

Task 3: Configure SIP Settings for Guest Users

To support SIP guest calls, you must configure the RealPresence DMA system with a dial rule prefix that corresponds to the prefix used for guests on the RealPresence Access Director system. Additionally, you must configure an external SIP port on the RealPresence Access Director system for registered users.

Polycom recommends the configurations described in the following sections:

- SIP Settings for Guest Users on the Polycom DMA System on page 25
- SIP Settings for Guest Users on the RealPresence Access Director System on page 26
- SIP Settings for Registered Users on the RealPresence Access Director System on page 26

SIP Settings for Guest Users on the Polycom DMA System

To configure the RealPresence DMA system to support SIP guest calls

1 See the Configure Signaling section of the Polycom RealPresence DMA System Operations Guide for detailed information about this process. Then on the RealPresence DMA system, go to Admin > Local Cluster > Signaling Settings.

2 Add a guest dial rule prefix (SIP Settings > Unauthorized prefixes > Add) and enable Strip prefix.

3 Configure the required information so that it matches the prefix for guest calls added in the RealPresence Access Director system.

4 Go to Admin > Call Server > Dial Rules and add dial rules to handle the incoming unauthorized guest calls, one for each type of call resolution.
5 Go to Admin > Call Server > Domains and add a domain to the domain list for the host specified for guest port configuration.

SIP Settings for Guest Users on the RealPresence Access Director System

To configure the RealPresence Access Director system external SIP port 5060 for guests

1. See the Polycom RealPresence Access Director Administrator’s Guide for detailed information about configuring SIP settings. Then on the RealPresence Access Director system, go to Configuration > SIP Settings.

2. Enable SIP signaling and then configure external port 5060 for SIP guest users (External Port Settings > Edit) with the required information. In this case:
 - **Port name**: Defaults to Unencrypted port.
 - **Transport**: UDP/TCP.
 - Enable Dial string policy and enter a dial string prefix (Prefix of Userinfo) that does not interfere with your dial plan and will be stripped by the RealPresence DMA system.
 - The host is a domain name change the system can implement. For example, if a SIP guest user calls 8222@polycom.com, but the host is configured as example.com and the prefix is 77, the system will change the users dial string to 778222@example.com.

To configure the RealPresence Access Director system external SIP port 5061 for guests

1. See the Polycom RealPresence Access Director Administrator’s Guide for detailed information about configuring SIP settings. Then on the RealPresence Access Director system, go to Configuration > SIP Settings.

2. Enable SIP signaling and then configure external port 5061 for SIP guest users (External Port Settings > Edit) with the required information. In this case:
 - **Port name**: Defaults to Encrypted port.
 - **Transport**: TLS.
 - Enable Dial string policy and enter a dial string prefix (Prefix of Userinfo) that does not interfere with your dial plan and will be stripped by the RealPresence DMA system.
 - The host is a domain name change the system can implement. For example, if a SIP guest user calls 8222@polycom.com, but the host is configured as example.com and the prefix is 77, the system will change the users dial string to 778222@example.com.

Task 4: Configure SIP Settings for Registered Users

SIP Settings for Registered Users on the RealPresence Access Director System

If you configure the external SIP ports 5060 and 5061 for guest users, you must also add an external SIP port in the RealPresence Access Director system for registered users.
To configure a RealPresence Access Director system non-standard external SIP port to support registered user calls

1. On the RealPresence Access Director system, go to Configuration > SIP Settings.

2. Enable SIP signaling and then configure a port for SIP registered users (External Port Settings > Add) with the required information. In this case:
 - Port number: Any non-standard port number that is not already in use.
 - Port name: RegisteredUser (for example).
 - Transport: Polycom suggests using TCP but UDP, UDP/TCP, or TLS may also be used. The transport protocol entered here must match the transport protocol for the RealPresence Access Director system site in the RealPresence Resource Manager system.

Configure Polycom Endpoint Systems

This solution supports the Polycom endpoint systems identified in Products Tested in this Solution on page 14.

Task 1: Configure Polycom HDX Series Endpoints

Polycom HDX series endpoints do not require any special set up for this solution. Polycom recommends automatic provisioning because it enables easy setup and access to advanced features.

See the Polycom HDX system documentation available at support.polycom.com for more information about configuring the system for automatic provisioning.

Task 2: Configure the Polycom Group Series System

See the RealPresence Group Series 300 or 500 user documentation at support.polycom.com for configuration information.

Task 3: Configure Polycom RealPresence Mobile or Desktop Endpoints

For specific information on configuring RealPresence Mobile or Desktop software in this solution, refer to the Help and the Release Notes for the RealPresence Mobile or RealPresence Desktop software version you are using, available at support.polycom.com.

Professional Mode Sign-In Settings

Users can choose to use their RealPresence Mobile or Desktop system in Professional Mode. In this mode, the system is automatically provisioned/configured by the RealPresence Resource Manager system. Polycom recommends automatic provisioning because it enables easy setup and access to advanced features.

The product Help describes how users configure their systems for professional mode. When setting up professional mode, the user will need to enter the user name and password configured in the RealPresence Resource Manager system to enable endpoint provisioning.
Configure the Polycom RealPresence Collaboration Server

To ensure that a RealPresence Mobile client can send content to a conference, on the RealPresence Collaboration Server, go to Setup > System Configuration > System Flags and set the value of the NUM_OF_INITIATE_HELLO_MESSAGE_IN_CALL_ESTABLISHMENT system flag to at least 3.

For information about adding system flags, see "Manually Adding and Deleting System Flags" in the Polycom RMX System Administrator Guide.

After the change, you must restart the RMX system.

Configure the Polycom RSS™ System

Ensure that the Polycom RSS 4000 system is in normal mode, not maximum security mode.

Refer to the Polycom RSS 4000 User Guide for more information about Polycom RSS working modes.
Deploying Two RealPresence Access Director Systems in a Tunnel Configuration

This chapter describes the configuration processes required for deploying two RealPresence Access Director systems to tunnel traffic to and from the inside network.

If you deploy two RealPresence Access Director systems in a tunnel configuration, one system acts as the tunnel server and the other system as the tunnel client. In a tunnel configuration, certain IP addresses are reserved for internal system use. The IP address you define for each system must differ from the IP addresses listed below:

- Non-encrypted tunnel configuration: 192.168.99.21
- Encrypted tunnel configuration: 192.168.99.1 - 192.168.99.21

Each RealPresence Access Director system requires an individual license. Although each system can be licensed for a different number of calls, the system with the fewest licensed calls determines the total number of calls that can traverse the tunnel between the two systems.

Before enabling the two-box tunnel feature, activate the licenses for both of the RealPresence Access Director systems.

If you deploy a two-box tunnel configuration, the HTTP tunnel reverse proxy feature within access proxy is not supported. If you enable the two-box tunnel configuration and then configure an HTTP tunnel reverse proxy, the two-box tunnel will automatically be disabled. Similarly, if you configure an HTTP tunnel reverse proxy, the proxy will be disabled if you then enable the two-box tunnel configuration. For information on the HTTP tunnel reverse proxy feature, see the Polycom RealPresence Access Director System Administrator’s Guide.

See these topics for detailed information about tunnel configuration settings.

- Configure the DNS Service for the Two-box Tunnel on page 30
- Configure Firewalls and Ports on page 30
- Install and Configure the RealPresence Access Director Systems on page 31
- Configure the RealPresence Resource Manager System on page 36
- Configure the Polycom RealPresence DMA System on page 37
- Configure Additional Polycom Components on page 37
Configure the DNS Service for the Two-box Tunnel

For complete DNS service configuration instructions, see “Deploying the RealPresence Access Director System in a Corporate DMZ Environment,” Configure the DNS Service on page 17 in this guide.

For a tunnel deployment, the IP address to use when you create the RealPresence Access Director system DNS A record for the internal DNS server depends on whether the tunnel client has one or two network interfaces. Use the following information to determine the correct IP address for the DNS A record:

- One network interface: The IP address of the tunnel client. This IP address matches the Remote tunnel client address field in the tunnel server settings.
- Two network interfaces: The internal signal and media IP address of the tunnel client. This IP address matches the Internal signal and media IP field in the tunnel client settings.

The example below assumes your tunnel client has two network interfaces.

- If the FQDN of the RealPresence Access Director system is rpad.example.com, and the internal signaling and media IP address of the tunnel client is 10.22.210.111, create an A record as shown below:

rpad.example.com IN A 10.22.210.111

Configure Firewalls and Ports

Follow these guidelines for configuring your firewalls.

- If you’re not familiar with firewall concepts and administration and your enterprise’s firewall implementation, please consult with someone who is.
- For greater security, Polycom recommends that you disable SSH and Web access connectivity from the Internet, and enable SSH and Web access connectivity from the LAN.

Outside Firewall Configuration

- Implement a WAN (untrusted) and LAN (trusted) configuration
- Configure 1:1 NAT
- Set interface mode to NAT
- Disable H.323 and SIP ALG
- Disable any H.323 helper services on the firewall (for example, Cisco® H.323 Fixup).

Inside Firewall Configuration

- Implement a WAN (untrusted) and LAN (trusted) configuration
- Disable H.323 and SIP ALG
- Disable any H.323 helper services on the firewall (for example, Cisco® H.323 Fixup).

For more information on port configuration, refer to Required Ports on page 48.
Install and Configure the RealPresence Access Director Systems

Task 1: Perform Basic Installation
Perform the basic installation and network configuration of two RealPresence Access Director systems as documented in the RealPresence Access Director System Getting Started Guide.

Task 2: Synchronize the Time and Set the Time Zones
After initial installation of the RealPresence Access Director systems, you must configure the time settings as follows:

- Synchronize the time on the tunnel server and tunnel client to the same Network Time Protocol (NTP) server before encrypting the tunnel between the two systems (if applicable).
- Select the time zone of your geographic location on the two systems.

To configure the time settings

1. From a browser, go to the IP address of the system that acts as the tunnel server.
2. Go to Admin > Time Settings.
3. In System time zone, select the time zone of your specific geographic location.
4. In NTP servers, enter the IP address or FQDN of the NTP server with which to synchronize.
5. Click Update and OK to accept your settings and restart the system.
6. Repeat the above steps for the system that acts as the tunnel client.

Changing the time settings requires a system restart.

Task 3: Activate the System Licenses
If you deploy two RealPresence Access Director systems in a tunnel configuration, one system acts as the tunnel server and the other system as the tunnel client. You must purchase and activate a license for each system. The license with the fewest number of calls reflects the total number of licensed calls available.

After activating both licenses, you can view the number of licensed calls from the user interface (Maintenance > License) of both the tunnel server and the tunnel client.

To activate the tunnel server license

1. From a browser, go to the IP address of the system that will act as the tunnel server.
2. Log into the RealPresence Access Director system user interface and go to Maintenance > License.
3 Enter the Activation key for the tunnel server license and click Update.
 The system restarts.

To activate the tunnel client license

1 From a browser, go to the IP address of the system that will act as the tunnel client.
2 Log into the RealPresence Access Director system user interface and go to Maintenance > License.
3 Enter the Activation key for the tunnel client license and click Update.
 The system restarts.

Task 4: Configure Network Settings for the Tunnel Server

In a two-box tunnel deployment, most network settings are configured on the RealPresence Access Director system that will act as the tunnel server, located in the corporate back-to-back DMZ. Network settings for the tunnel server can be configured for one to four network interfaces. Note that you must also assign a network interface for the tunnel itself. On the tunnel server, the network interface assigned to tunnel communication is the IP address of the remote tunnel client.

To configure network settings for the tunnel server

1 See the Polycom RealPresence RealPresence Access Director System Administrator’s Guide for detailed information about configuring network settings for the tunnel server. Then from your Web browser, enter the IP address of the RealPresence Access Director system that will act as the tunnel server and log into the user interface.
2 Go to Admin > Network Settings > Configure Network Setting.
3 In the Step 1 of 3: General Network Settings window, confirm the general network settings for eth0 and click Next.
4 In the Step 2 of 3: Advanced Network Settings window, click each of the network interfaces to configure and enter the following information.
 - IPv4 Address
 - IPv4 Subnet Mask
 - IPv4 Default Gateway
5 In the Step 3 of 3: Service Network Settings window, select the IP address of the network interface to assign to each type of traffic and to the tunnel between the tunnel server and tunnel client:
 - External Signaling IP: The IP address of the network interface used for SIP and H.323 signaling and access proxy traffic between the RealPresence Access Director system and external networks.
 - External Relay IP: The IP address of the network interface used for media relay between the RealPresence Access Director system and external networks.
Management IP: The IP address of the network interface used for tunnel communication between the tunnel server and tunnel client and management traffic, including Web management of the user interface, SSH, DNS, NTP, remote syslog, and OCSP.

- If you are using three or four network interfaces on the tunnel server, tunnel communication between the two systems and management traffic may be assigned to different network interfaces. In this case, select the network interface used for management traffic in the Management IP field. Configure the interface for tunnel communication between the two systems in the tunnel settings (see Task 6: Configure Tunnel Settings on the Tunnel Server on page 34). On the tunnel server, the network interface assigned to tunnel communication between the two systems is the IP address of the remote tunnel client.

External Access Proxy IP: From the Available IP address list, select a network interface to assign as an external access proxy IP address and click the right arrow to move it to the External Access Proxy IP list. You can assign up to four external access proxy IP addresses.

6 Select Deployed behind Outside Firewall/NAT and enter the following information:

- Signaling relay address: The RealPresence Access Director system's public IP address for signaling traffic. This IP address must be mapped on the outside firewall.

- Media relay address: The RealPresence Access Director system's public IP address for media traffic. This IP address must be mapped on the outside firewall.

Depending on your network interface configuration, the Signaling relay address and the Media relay address may be the same IP address.

7 Click Done > Commit and Reboot Now to save the network settings.

Task 5: Configure Network Settings for the Tunnel Client

Network settings for the tunnel client can be configured for one to three network interfaces. On the tunnel client, the network interface assigned to tunnel communication between the two systems is the IP address of the remote tunnel server.

To configure network settings for the tunnel client

1 See the Polycom RealPresence RealPresence Access Director System Administrator’s Guide for detailed information about configuring network settings for the tunnel client. Then from your Web browser, enter the IP address of the RealPresence Access Director system that will act as the tunnel client and log into the user interface.

2 Go to Admin > Network Settings > Configure Network Setting.

3 In the Step 1 of 3: General Network Settings window, confirm the general network settings for eth0 and click Next.

4 In the Step 2 of 3: Advanced Network Settings window, click each of the network interfaces to configure and enter the following information.

- IPv4 Address
- IPv4 Subnet Mask
- IPv4 Default Gateway
5 In the **Step 3 of 3: Service Network Settings** window, select the network interface to assign as the **Management IP** address. The network interface that handles management traffic is based on the number of network interfaces configured on the tunnel client. See **Tunnel Client Network Interface Configuration** on page 70.

6 Click **Done > Commit and Reboot Now** to save the network settings.

If the tunnel client uses more than one network interface, go to **Configure > Tunnel Settings** to specify the IP address of the network interface that the tunnel client uses for internal signaling and media communication with the RealPresence DMA system. See the **Internal signaling/media/access proxy IP of tunnel client** field in **Task 7: Configure Tunnel Settings on the Tunnel Client** on page 35.

Task 6: Configure Tunnel Settings on the Tunnel Server

If you use the encryption option for the two-box tunnel, you must first synchronize the time on the tunnel server and the tunnel client to the same Network Time Protocol (NTP) server *before* encrypting the tunnel. See **Task 2: Synchronize the Time and Set the Time Zones** on page 31.

Due to legal requirements in some countries related to the encryption of data, the option to encrypt the two-box tunnel between the two systems is not available in all instances of the RealPresence Access Director system.

To configure settings on the tunnel server

1 Go to **Configuration > Tunnel Settings**.

2 Use the information in the table below to configure the settings for your system. An asterisk (*) indicates a required field.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Tunnel</td>
<td>Select to enable the tunnel feature.</td>
</tr>
<tr>
<td>Settings</td>
<td></td>
</tr>
<tr>
<td>Server</td>
<td>Select Server to enable the system to operate as a tunnel server.</td>
</tr>
<tr>
<td>Client</td>
<td></td>
</tr>
<tr>
<td>Encrypted tunnel</td>
<td>When selected, communications between the tunnel server and tunnel client are encrypted. This setting must be the same on both the tunnel server and tunnel client.</td>
</tr>
<tr>
<td>Note</td>
<td>This option displays only if you purchase a license that supports encryption of the tunnel between two systems. If supported, select this option to encrypt the tunnel after you obtain your activation key code and activate your license.</td>
</tr>
</tbody>
</table>
Task 7: Configure Tunnel Settings on the Tunnel Client

To configure tunnel settings on the tunnel client

1. Go to Configuration > Tunnel Settings.
2. Use the information in the table below to configure the settings for your system. An asterisk (*) indicates a required field.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enable Tunnel</td>
<td>The tunnel feature is enabled if you have configured the tunnel server.</td>
</tr>
<tr>
<td>Server</td>
<td>Select Client to enable the system to operate as the tunnel client.</td>
</tr>
<tr>
<td>Client</td>
<td></td>
</tr>
<tr>
<td>Encrypted tunnel</td>
<td>When selected, communications between the tunnel server and tunnel client are encrypted. This setting must be the same on both the tunnel server and tunnel client.</td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

This option displays only if you purchase a license that supports encryption of the tunnel between two systems. If supported, select this option to encrypt the tunnel after you obtain your activation key code and activate your license.
The system restarts.

The status of the two-box tunnel connection displays on the user interface Dashboard on both the tunnel server and tunnel client.

Task 8: Configure System Certificates

The tunnel connection between the tunnel server and client uses a default self-signed certificate dedicated for tunnel use. This certificate cannot be changed but can be refreshed when it expires.

In addition to the tunnel certificate, you must add a certificate authority’s public certificate and create a certificate signing request to obtain a signed certificate for the RealPresence Access Director system. For instructions, see the *Polycom RealPresence Access Director Administrator’s Guide*.

You should configure certificates before federating your RealPresence Access Director system with another enterprise.

Configure the RealPresence Resource Manager System

In a two-box tunnel configuration, the RealPresence Resource Manager system does not provision the tunnel server or tunnel client but does provision endpoints through the RealPresence Access Director system.

To enable endpoint provisioning, configure the information below on the RealPresence Resource Manager system. For detailed instructions, see *The Polycom® RealPresence® Resource Manager System Operations Guide*.

- Create a site for the RealPresence Access Director system
- Create an RPAD server provisioning profile
- Create a network provisioning profile for endpoints
- Create a provisioning rule and associate it with all related profiles
- Create a user account for the RealPresence Access Director system

Configure the Polycom RealPresence DMA System

See [Configure the Polycom RealPresence DMA System](#) on page 23 in the chapter *Deploying the RealPresence Access Director System in a Corporate DMZ Environment*.

Configure Additional Polycom Components

Refer to the following sections in the chapter *Deploying the RealPresence Access Director System in a Corporate DMZ Environment* to configure additional Polycom components.

- [Configure Polycom Endpoint Systems](#) on page 27
- [Configure the Polycom RealPresence Collaboration Server](#) on page 28
- [Configure the Polycom RSS™ System](#) on page 28
Federation Between RealPresence Access Director Systems

This chapter describes how to configure this solution to support calls between endpoint users in two separate but federated (trusted) divisions or enterprises. In the deployment solution described in this chapter, each division or enterprise must have a RealPresence Access Director system.

In this chapter, we assume you have already performed the standard deployment as documented in Deploying the RealPresence Access Director System in a Corporate DMZ Environment on page 16.

Federation in a SIP Environment

To configure this solution to support calls between endpoint users in two separate but federated (trusted) divisions or enterprises in a SIP environment, each division or enterprise must have a RealPresence Access Director system that is configured:

- To trust the other’s certificate
- With mutual TLS enabled
- With a default route to the other’s Real Presence Access Director system.

In addition, the federated enterprises must:

- Have a dial plan to route traffic to and from specific ports using specified protocols
- Directed to the designated port

To support SIP calls from federated divisions or enterprises, perform the following deployment tasks:

- Task 1: Create Additional DNS SRV Records on the External DNS Server
- Task 2: Configure the RealPresence Access Director Systems to Support Federated SIP Calls
- Task 3: Configure the Polycom RealPresence DMA Systems to Support Federated SIP Calls

Task 1: Create Additional DNS SRV Records on the External DNS Server

Configure the DNS Service on page 17 describes the basic DNS setup required for this solution. Federating sites requires additional DNS configuration as described here.

- Complete this process on the DNS systems for the two sites being federated.
- If you’re not familiar with DNS administration, the creation of various kinds of DNS resource records, and your enterprise’s DNS implementation, please consult with someone who is.
Create an SRV record on the external DNS server (the DNS server configured on the Network Setting page of the RealPresence Access Director system) to map the SRV service address to the FQDN of the RealPresence Access Director system. The SRV record is required by the Auto Find Provisioning Server feature of the RealPresence Mobile system.

So if the RealPresence Access Director system has the FQDN name `rpad.example.com`, add an SRV record as follows:

```
_sips._tcp.example.com. IN SRV 0 0 5080 rpad.example.com.
```

Task 2: Configure the RealPresence Access Director Systems to Support Federated SIP Calls

To configure the federated sites' RealPresence Access Director systems to support SIP calls

1. See the *Polycom RealPresence Access Director Administrator's Guide* for detailed information about configuring SIP settings. Then go to Configuration > SIP Settings.

 Complete this process on the RealPresence Access Director systems for the two sites being federated.

2. Enable SIP signaling and add a port for SIP users (External Port Settings > Add) and configure the required information.
 - Transport protocol must be TLS (mutual TLS).
 - Require certificate from remote endpoint must be selected.

3. Go to Configuration > Federation Settings > Add and configure the required information for the federated sites.
 - Enter the FQDN or IP address of the federated site’s RealPresence Access Director system.

4. Go to Admin > Certificates and verify that the federated site’s certificate is in the Trusted Store.

Task 3: Configure the Polycom RealPresence DMA Systems to Support Federated SIP Calls

To configure the federated sites' RealPresence DMA systems to support federated SIP calls

1. See the *Polycom RealPresence DMA System Operations Guide* for detailed information about adding an external SIP peer. Then go to Network > External SIP Peer > Add.

 Complete this process on the RealPresence Access Director systems for the two sites being federated.
2 On the **External SIP Peer** tab, enter the internal signaling IP address of the RealPresence Access Director system as the **Next hop address**.

3 On the **Postliminary** tab, set **Request URI options** to **Use original request URI (RR)**.

4 On the **Authentication** tab, click **Add** and add the federated site’s authentication information.

5 Go to **Admin > Call Server > Device Authentication** and add the federated site’s authentication credentials to the list of device credential entries that your call server should check.

6 Select the **Inbound Authentication** tab, click **Add** and add the local system’s authentication information for inbound messages.

7 Select the **Shared Outbound Authentication** tab, click **Add** and add the federated site’s authentication information for outbound messages.

8 Go to **Admin > Local Cluster > Signaling Settings** and in the **SIP Settings** section, select **Enable SIP signaling** and **Enable authentication**.

9 Go to **Admin > Call Server > Dial Rules** and add a dial rule for federated site’s RealPresence Access Director system that resolves to external SIP peer, so the RealPresence DMA system can send the INVITE message out to the RealPresence Access Director system.

10 Go to **Admin > Call Server > Domains** and add the local RealPresence Access Director system to the domain list.

Federation in an H.323 Environment

To configure this solution to support calls between endpoint users in two separate but federated (trusted) divisions or enterprises in an H.323 environment, each division or enterprise must have a RealPresence Access Director system that is configured:

- With a dial plan to route E.164 aliases properly between the enterprises
- To be directed to the designated port

To support H.323 calls from federated divisions or enterprises, perform the following deployment tasks:

- **Task 1: Configure the RealPresence Access Director Systems to Support Federated H.323 calls**
- **Task 2: Configure the Polycom RealPresence DMA Systems to Support Federated H.323 Calls**

Task 1: Configure the RealPresence Access Director Systems to Support Federated H.323 calls

To configure the federated enterprises’ RealPresence Access Director systems to support H.323 calls

1 See the *Polycom RealPresence Access Director Administrator’s Guide* for detailed information about configuring H.323 settings. Then go to **Configuration > H.323 Settings**.
2 Enable H.323 signaling and configure the required information.

- Gatekeeper (next hop) address is the RealPresence DMA system IP address.
- CIDR IP addresses are based on the RealPresence DMA system configurations:
 - If the RealPresence DMA system is set to direct mode, the CIDR IP addresses must include all internal endpoints and the same side’s SBC IP addresses.
 - If two RealPresence DMA systems are configured as a cluster, the CIDR IP addresses should include all gatekeeper addresses.
 - If the RealPresence Access Director system is deployed for registration, the SBC net of the RealPresence DMA system’s site setting should have the RealPresence Access Director system’s IP address for open B2B.

3 Go to Configuration > Federation Settings > Add and configure the required information for the federated enterprise.

- Enter the IP address of the federated site’s system.

Generally, you will not need to configure the remote RAS port and H.225 signaling ports. The port used during the call will be returned by the DNS SRV search.

Task 2: Configure the Polycom RealPresence DMA Systems to Support Federated H.323 Calls

To configure the federated enterprises’ RealPresence DMA systems to support H.323 calls

1 See the Polycom RealPresence DMA System Operations Guide for detailed information about adding a neighbored gatekeeper. Then go to Network > External Gatekeeper > Add and add the local RealPresence Access Director system as a neighbored gatekeeper identified by its internal signaling address.

Complete this process on the RealPresence Access Director systems for both of the enterprises being federated.

2 Go to Admin > Call Server > Dial Rules and add a “resolve to external gatekeeper” dial rule for the local RealPresence Access Director system that has been identified as the gatekeeper.

3 Go to Admin > Call Server > Domains and add the local RealPresence Access Director system to the domain list.
Federation Between RealPresence Access Director and Other Systems

This chapter describes how to configure this solution to support calls between endpoint users in two separate but federated (trusted) divisions or enterprises.

In this deployment solution, one of the federated sites has a RealPresence Access Director. The other site has a different session border controller. Supported solutions include:

- Federation in an H.323 Environment with Polycom VBP-E Systems
- Federation in a SIP Environment with Acme Packet

In this chapter, we assume you have already performed the standard deployment for the applicable systems as documented in Deploying the RealPresence Access Director System in a Corporate DMZ Environment on page 16.

Federation in an H.323 Environment with Polycom VBP-E Systems

In this solution deployment model, two enterprises or divisions are federated. One of the federated enterprise has a RealPresence Access Director system as its access controller along with a RealPresence DMA system as gatekeeper. The other federated enterprise has a Polycom VBP 5300E as its access controller and either uses an embedded or Polycom CMA system v6.2 gatekeeper.

To support calls between these federated divisions or enterprises, perform the following deployment tasks:

- Task 1: Create an Additional DNS A Record on the External DNS Server on page 43
- Task 2: Create Additional DNS SRV Records on the External DNS Server on page 43
- Task 3: Configure the RealPresence Access Director Systems to Support Federated H.323 calls on page 43
- Task 4: Configure the Polycom RealPresence DMA System to Support Federated H.323 Calls on page 44
- Task 5 (Conditional): Configure the CMA system to support federated H.323 calls on page 44
- Task 6 (Conditional): Configure the VBP-5300E System to Support Federated H.323 Calls on page 45
- Task 7 (Conditional): Configure the VBP-5300E System in Embedded Gatekeeper Mode to Support Federated H.323 Calls on page 45
Task 1: Create an Additional DNS A Record on the External DNS Server

Configure the DNS Service on page 17 describes the basic DNS setup required for the RealPresence Access Director system in this solution. Federation requires additional DNS configuration as described here.

If you’re not familiar with DNS administration, the creation of various kinds of DNS resource records, and your enterprise’s DNS implementation, please consult with someone who is.

Create a DNS A (address) record on the external DNS server to map the FQDN of the VBP 5300E system to its public (WAN side) IP address.

So if the VBP-E system has the FQDN name `vbp_b.example2.com`, add an A record as follows.

```plaintext
vbpe_b.example2.com IN A 192.168.11.100
```

Task 2: Create Additional DNS SRV Records on the External DNS Server

Each access controller—the RealPresence Access Director system and the VBP 5300E system must have an SRV record on the external DNS server to map the SRV service address to its FQDN.

- Create an SRV record on the external DNS server to map the SRV service address to the FQDN of the RealPresence Access Director system.

 The SRV record is required by the Auto Find Provisioning Server feature of the RealPresence Mobile system.

 So if the RealPresence Access Director system has the FQDN name `rpad.example.com`, add SRV records as follows.

  ```plaintext
  _h323ls._udp.example.com. IN SRV 0 0 1719 rpad.example.com.
  _h323cs._tcp.example.com. IN SRV 0 0 1720 rpad.example.com.
  ```

- Create an SRV record on the external DNS server to map the SRV service address to the public IP address of the Polycom VBP-5300E system.

 So if the VBP-E system has the FQDN name `vbpe_b.example2.com`, add SRV records as follows.

  ```plaintext
  _h323ls._udp.example2.com. IN SRV 0 0 1719 vbpe_b.example2.com
  _h323cs._tcp.example2.com. IN SRV 0 0 1720 vbpe_b.example2.com
  ```

Task 3: Configure the RealPresence Access Director Systems to Support Federated H.323 calls

To configure the federated enterprises’ RealPresence Access Director systems to support federated H.323 calls

2. Enable H.323 signaling and configure the following gatekeeper and network settings.
 - Gatekeeper (next hop) address is the RealPresence DMA system IP address.
CIDR should only include the subnet of the internal gatekeeper.

The CIDR is used by the RealPresence Access Director system to determine if the origin of a call is the internal network or external network. The value of CIDR depends on the local RealPresence DMA system mode (Routed or Direct).

- If the local RealPresence DMA is configured in Routed mode, the CIDR should only include the subnet of the DMA system.
- If the local RealPresence DMA system is configured in Direct mode, then the CIDR should include the subnet of the DMA system and local enterprise endpoints.

3 Go to **Configuration > Federation Settings > Add** and configure the required information for the federated enterprise.

- Enter the FQDN or IP address of the federated site’s VBP-E system.
- Complete the other tabs and fields of the dialog box as required

Generally, you will not need to configure the remote RAS port and H.225 signaling ports. The port used during the call will be returned by the DNS SRV search.

Task 4: Configure the Polycom RealPresence DMA System to Support Federated H.323 Calls

To configure the federated enterprise’s RealPresence DMA systems to support federated calls

1 See the *Polycom RealPresence DMA System Operations Guide* for detailed information about adding a neighbored gatekeeper. Then go to **Network > External Gatekeeper > Add** and add the local RealPresence Access Director system as a neighbored gatekeeper identified by its internal signaling address.

2 Go to **Admin > Call Server > Dial Rules** and add a “resolve to external gatekeeper” dial rule for the local RealPresence Access Director system that has been identified as the gatekeeper.

Task 5 (Conditional): Configure the CMA system to support federated H.323 calls

If a CMA system is the gatekeeper for the federated enterprise using the VBP-E access controller, perform this task. Otherwise, skip to **Task 7 (Conditional): Configure the VBP-5300E System in Embedded Gatekeeper Mode to Support Federated H.323 Calls** on page 45.

To configure the federated enterprises’ CMA systems to support federated H.323 calls

1 See the *Polycom CMA System Operations Guide* for detailed information about adding neighbored gatekeeper. Then go to **Admin > Gatekeeper Settings > Neighboring Gatekeepers** and add the RealPresence Access Director system as neighboring gatekeeper.
2 Go to Admin > Server Settings > Network and enter the VBP-E’s LAN interface address as the IPv4 Default Gateway address.

3 Go to Admin > Dial Plan and Sites > Dial Rules and add a Prefix dial rule. Assign it a Routing Action of Route to a trusted neighbor.

4 Go to Trusted Neighbors and select the RealPresence Access Director system as a trusted neighbor.

Task 6 (Conditional): Configure the VBP-5300E System to Support Federated H.323 Calls

If a CMA system is the gatekeeper for the federated enterprise using the VBP-E access controller, perform this task. Otherwise, skip to Task 7 (Conditional): Configure the VBP-5300E System in Embedded Gatekeeper Mode to Support Federated H.323 Calls on page 45.

To configure the federated enterprise’s VBP-5300E systems to support federated calls when the CMA system is the gatekeeper

1 See the Polycom VBP System Configuration Guide for detailed information about specifying H.323 settings. Then go to Configuration Menu> VoIP ALG > H.323.

2 Select Gatekeeper mode > LAN/Subscriber-side gatekeeper mode and enter the CMA system’s IP address as the LAN/Subscriber-side GK address.

Task 7 (Conditional): Configure the VBP-5300E System in Embedded Gatekeeper Mode to Support Federated H.323 Calls

If the VBP-E is both the access controller and gatekeeper for the federated enterprise or division, perform this task.

To configure the federated enterprises’ VBP-5300E systems to support federated calls when the CMA system is the gatekeeper

1 See the Polycom VBP System Configuration Guide for detailed information about specifying H.323 settings. Then go to Configuration Menu> VoIP ALG > H.323.

2 Select Gatekeeper mode > LAN/Subscriber-side gatekeeper mode and enter the CMA system’s IP address as the LAN/Subscriber-side GK address.

Federation in a SIP Environment with Acme Packet

Refer to the Acme Packet® Net-Net Enterprise Session Director (ESD) documentation to support calls from federated divisions or enterprises with an Acme Packet Net-Net Enterprise Session Director system in their environment.
Verifying Deployment

Verifying Access Proxy

Verifying access proxy confirms the functionality and connectivity between the RealPresence Access Director system and the RealPresence Mobile system, and between the RealPresence Access Director system and the RealPresence Resource Manager system.

To verify access proxy

1. On the RealPresence Mobile device, configure a WiFi network.
 For example, if the RealPresence Access Director public IP address is 192.168.11.175, make sure that the RealPresence Mobile system can access this address.

2. On the RealPresence Mobile device, configure this sign-in setting.
 - **Provision Server**: FQDN or public IP address of the RealPresence Access Director system.
 - **User Name**: User account login managed by the RealPresence Resource Manager system.
 - **Password**: Correct password associated with User Name.

3. Click **Sign in**, and verify that sign-in was successful.

4. On the RealPresence Resource Manager system, go to **ENDPOINT > Monitor view** to check the status of the user.

Verifying Call Success

To verify registration and call success with the RealPresence DMA system

1. Have a user sign into the RealPresence DMA system and verify that the user registered to the DMA system successfully.

2. Place a call, and verify that the call was established successfully.

3. Place a long call, and verify that the call remained connected.

4. Have the user sign out, and verify that the user was unregistered from the RealPresence DMA system successfully.
Verifying Certificates

Verifying certificates confirms that the administrator installed the correct certificates on the RealPresence Resource Manager, RealPresence Access Director, and RealPresence Mobile systems.

To verify certificates:

1. In the access proxy configuration, select these settings:
 - Require client certificate from the remote endpoint
 - Verify certificate from internal server

2. Have a user sign on to the RealPresence Mobile device, and verify that the user signed on successfully.

3. In SIP settings, select TLS transport, and verify that the user can register and place a call successfully.
Required Ports

Port range settings can be configured to decrease the number of dynamic ports that need to be open on your enterprise’s inside or outside firewall. A port range for a specific service indicates the number of ports that must be available to accommodate the number of calls for which your system is licensed.

After you have activated the license for your system, the RealPresence Access Director system automatically calculates the port ranges for your license. You can change port ranges as needed. See the Polycom RealPresence Access Director System Administrator’s Guide.

If you change any port ranges for dynamic source ports, you must also change the port range settings on your firewall. The port ranges in the RealPresence Access Director system must match the port ranges on the firewall.

In the tables that follow, port ranges are indicated by a number in parentheses, followed by the port range values, as shown in this example:

(2)
13001-15000

Where (2) indicates SIP dynamic source ports and 13001-15000 is the range of port numbers.

Use the table below as a key for port range settings.

<table>
<thead>
<tr>
<th>Type of Ports</th>
<th>Transport</th>
<th>Associated Number in Port Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>H.323 dynamic ports</td>
<td>TCP</td>
<td>(1)</td>
</tr>
<tr>
<td>SIP dynamic source ports</td>
<td>TCP</td>
<td>(2)</td>
</tr>
<tr>
<td>Access proxy dynamic source ports</td>
<td>TCP</td>
<td>(3)</td>
</tr>
<tr>
<td>External media ports</td>
<td>UDP</td>
<td>(4)</td>
</tr>
<tr>
<td>Internal media ports</td>
<td>UDP</td>
<td>(5)</td>
</tr>
</tbody>
</table>

The following sections define the required ports to configure for the RealPresence Access Director system.

- Management Ports on page 49
- H.323 and WAN Ports on page 52
- H.323 and LAN Ports on page 57
- SIP and WAN Ports on page 60
- SIP and LAN Ports on page 62
Management Ports

The following tables describe the management ports on which the RealPresence Access Director system (RPAD) can listen.

- From the WAN to the RealPresence Access Director System on page 49
- From the LAN to the RealPresence Access Director System on page 50
- From the RealPresence Access Director System to the WAN on page 50
- From the RealPresence Access Director System to the LAN on page 51

For greater security, Polycom recommends that you disable SSH and Web access connectivity from the WAN, and enable SSH and Web access connectivity from the LAN. If you require the ability to manage the RealPresence Access Director system from the WAN, refer to the following tables for specific requirements.

From the WAN to the RealPresence Access Director System

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of the host managing the RPAD system via HTTPS</td>
<td>Any</td>
<td>TCP</td>
<td>*The RPAD system public management IP address</td>
<td>8443</td>
<td>HTTPS Web connectivity from the WAN client to the RPAD system</td>
</tr>
<tr>
<td>IP address of the host managing the RPAD system via SSH</td>
<td>Any</td>
<td>TCP</td>
<td>The RPAD system public management IP address</td>
<td>22</td>
<td>SSH connectivity from the WAN client to RPAD system</td>
</tr>
</tbody>
</table>

* The RealPresence Access Director system public management IP address refers to the public IP address mapped in the firewall located between the WAN and the RealPresence Access Director system.
From the LAN to the RealPresence Access Director System

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of the host managing the RPAD system via HTTPS</td>
<td>Any</td>
<td>TCP</td>
<td>*The RPAD system public management IP address</td>
<td>8443</td>
<td>HTTPS Web connectivity from internal client to the RPAD system</td>
</tr>
<tr>
<td>IP address of the host managing the RPAD system via SSH</td>
<td>Any</td>
<td>TCP</td>
<td>The RPAD system public management IP address</td>
<td>22</td>
<td>SSH connectivity from internal client to the RPAD system</td>
</tr>
<tr>
<td>IP address of the host sending an SNMP request to the RPAD system</td>
<td>Any</td>
<td>UDP or TCP</td>
<td>The RPAD system public management IP address</td>
<td>161</td>
<td>SNMP connection from internal server to the RPAD system</td>
</tr>
</tbody>
</table>

* The RealPresence Access Director system public management IP address refers to the public IP address mapped in the firewall located between the WAN and the RealPresence Access Director system.

** The protocol and DST port depend on the SNMP settings you configure in the RealPresence Access Director system user interface. See the Polycom *RealPresence Access Director System Administrator’s Guide* for details.

From the RealPresence Access Director System to the WAN

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPAD management IP address</td>
<td>123</td>
<td>UDP</td>
<td>IP address of external NTP, if in use</td>
<td>123</td>
<td>NTP service from the RPAD system to the public NTP server</td>
</tr>
<tr>
<td>RPAD management IP address</td>
<td>30001 - 60000</td>
<td>TCP</td>
<td>IP address of external OCSP responder, if in use</td>
<td>8080</td>
<td>TCP connectivity from the RPAD system to the public OCSP responder</td>
</tr>
</tbody>
</table>
From the RealPresence Access Director System to the LAN

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPAD management IP address</td>
<td>30001 - 60000</td>
<td>UDP</td>
<td>IP address of external DNS, if in use</td>
<td>53</td>
<td>DNS service from the RPAD system to the internal DNS server</td>
</tr>
<tr>
<td>RPAD management IP address</td>
<td>30001 - 60000</td>
<td>TCP</td>
<td>IP address of internal OCSP responder, if in use</td>
<td>8080</td>
<td>TCP connectivity from the RPAD system to the internal OCSP responder</td>
</tr>
<tr>
<td>RPAD management IP address</td>
<td>30001 - 60000</td>
<td>TCP</td>
<td>IP address of the internal Microsoft Active Directory LDAP server</td>
<td>389</td>
<td>RPAD system integration with Microsoft Active Directory</td>
</tr>
<tr>
<td>RPAD management IP address</td>
<td>30001 - 60000</td>
<td>*UDP or TCP</td>
<td>IP address of internal syslog server, if in use</td>
<td>514, 10514</td>
<td>Syslog service from the RPAD system to the internal syslog server</td>
</tr>
<tr>
<td>RPAD management IP address</td>
<td>30001 - 60000</td>
<td>**UDP or TCP</td>
<td>IP address of internal SNMP server, if in use</td>
<td>**162</td>
<td>SNMP connectivity from the internal server to the RPAD system</td>
</tr>
</tbody>
</table>

* The protocol for syslog service depends on the remote syslog settings you configure in the RealPresence Access Director system user interface. See the Polycom RealPresence Access Director System Administrator’s Guide.

** The protocol and DST port depend on the SNMP settings you configure in the RealPresence Access Director system user interface. See the Polycom RealPresence Access Director System Administrator’s Guide for details.
H.323 and WAN Ports

The following table describes the required ports for DMZ port-filtering policies between the RealPresence Access Director system’s public IP address and the WAN for H.323 support.

- From the WAN to the RealPresence Access Director System on page 52
- From the RealPresence Access Director System to the WAN on page 53
- From the WAN to the RealPresence Access Director System: H.323 B2B Calls on page 54
- From the RealPresence Access Director System to the WAN: H.323 B2B Calls on page 55

![Warning]

If your firewall has an H.323 function that enables it to intercept and alter H.323 messaging, for example, H.323 ALG, you must disable the service. If not disabled, the service may cause call failures due to rewriting of port or IP address information.

From the WAN to the RealPresence Access Director System

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of external H.323 clients</td>
<td>>1023</td>
<td>TCP</td>
<td>*RPAD public signaling IP address</td>
<td>**389</td>
<td>LDAP connectivity from the WAN to the RPAD system</td>
</tr>
<tr>
<td>IP address of external H.323 clients</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD public signaling IP address</td>
<td>**443</td>
<td>HTTPS connectivity from the WAN to the RPAD system</td>
</tr>
<tr>
<td>IP address of external H.323 clients</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD public signaling IP address</td>
<td>5222</td>
<td>XMPP connectivity from the WAN to the RPAD system</td>
</tr>
<tr>
<td>IP address of external H.323 clients</td>
<td>1719</td>
<td>UDP</td>
<td>* RPAD public signaling IP address</td>
<td>***1719</td>
<td>Inbound H.225 UDP connectivity for B2B call scenarios</td>
</tr>
<tr>
<td>IP address of external H.323 clients</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD public signaling IP address</td>
<td>****1720</td>
<td>H.225 TCP connectivity from the WAN to the RPAD system</td>
</tr>
</tbody>
</table>
From the RealPresence Access Director System to the WAN

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of external H.323 clients</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD public signaling IP address</td>
<td>(1) (10001 - 13000)</td>
<td>H.245 TCP connectivity from the WAN to the RPAD system</td>
</tr>
<tr>
<td>IP address of external H.323 clients</td>
<td>>1023</td>
<td>UDP</td>
<td>*****RPAD public media IP address</td>
<td>(4) (20002 - 30001)</td>
<td>Inbound RTP traffic transport from the WAN to the RPAD system</td>
</tr>
</tbody>
</table>

* The RealPresence Access Director system public signaling IP address refers to the public IP address for signaling mapped in the firewall located between the WAN and the RealPresence Access Director system.

** Ports 65100 and 65101 by default are open and listening to support the access proxy process. The RealPresence Access Director system automatically redirects connections on port 443 to port 65100, and on port 389 to port 65101 to enable access proxy to function without root ownership of the process within the CentOS operating system.

*** 1719 is the port used by remote H.323 endpoints to request registration with the RealPresence Access Director system.

**** 1720 is the default H.225 TCP port in the RealPresence Access Director system. If you change the port in the RealPresence Access Director system, you must also change it accordingly on the firewall.

***** The RealPresence Access Director system public media IP address refers to the public IP address for media mapped in the firewall located between the WAN and the RealPresence Access Director system.

From the RealPresence Access Director System to the WAN

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPAD external signaling IP address</td>
<td>(1) (10001 - 13000)</td>
<td>TCP</td>
<td>IP address of external H.323 devices</td>
<td>*1720</td>
<td>Outbound H.225 TCP connectivity for non-H.460 call scenarios</td>
</tr>
<tr>
<td>RPAD external signaling IP address</td>
<td>(1) (10001 - 13000)</td>
<td>TCP</td>
<td>IP address of external H.323 devices</td>
<td>>1023</td>
<td>Outbound H.245 TCP connectivity for non-H.460 call scenarios</td>
</tr>
</tbody>
</table>
From the WAN to the RealPresence Access Director System: H.323 B2B Calls

If you use the RealPresence Access Director system for H.323 enterprise-to-enterprise calls, the ports listed in the tables below are required in addition to those listed in the preceding table.

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPAD external media IP</td>
<td>(1)</td>
<td>UDP</td>
<td>IP address of external H.323 devices</td>
<td>>1023</td>
<td>**Outbound RTP traffic transport from the RPAD system to the WAN</td>
</tr>
<tr>
<td>address (20002 - 30001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 1720 is the default H.225 TCP destination port in the RealPresence Access Director system. If you change the port in the RealPresence Access Director system, you must also change it accordingly on the firewall.

** Most firewalls do not require a specific outbound media policy for this port range as it is the same as the inbound range. The port information is included here for reference.
From the RealPresence Access Director System to the WAN: H.323 B2B Calls

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Public media IP address of RPAD or VBP-E in the other enterprise</td>
<td>(4) (20002 - 30001) (RPAD - RPAD) 16386 - 25386 (VBP-E 5300-E - RPAD)</td>
<td>UDP</td>
<td>RPAD public media IP address</td>
<td>(4) (20002 - 30001)</td>
<td>Inbound RTP traffic transport from WAN to RPAD for B2B call scenarios</td>
</tr>
</tbody>
</table>

* SRC Port 10001-10300 (RPAD-RPAD) assumes that a different enterprise RealPresence Access Director system also has 100 licenses and the default port range settings.

** DST Port 1720 is the default H.225 ports on the local RealPresence Access Director system. If you change the ports on the local system, you must also changed them accordingly on the firewall.

*** SRC Port 10001 - 10300 (RPAD-RPAD) assumes another enterprise RealPresence Access Director system also has 100 licenses and the default port pool settings.
### SRC IP	SRC Port	Protocol	DST IP	DST Port	Description
RPAD external media IP address | (4) (20002 - 30001) | UDP | Public media IP address of RPAD or VBP-E in the other enterprise | ****(4) (20002 - 30001) (RPAD - RPAD) 16386 - 25386 (RPAD - VBP-E 5300-E) | Outbound RTP traffic transport from RPAD to WAN for B2B call scenarios

* SRC Port 1719 is the default H.225 UDP port on the local RealPresence Access Director system. If you change the port in the RealPresence Access Director system, you must also change it accordingly on the firewall.

** DST Ports 1719 and 1720 are the default H.225 ports on the RealPresence Access Director system or VBP-E of the other enterprise, so these two ports must be the same as the RealPresence Access Director system or VBP-E of the other enterprise.

*** DST Port 10001 - 10300 (RPAD-RPAD) assumes another enterprise RealPresence Access Director system also has 100 licenses and the default port pool settings.

**** DST Port 20002-21001 (RPAD-RPAD) assumes another enterprise RealPresence Access Director system also has 100 licenses and the default port pool settings.
H.323 and LAN Ports

The following table describes the required ports for DMZ port-filtering policies between the RealPresence Access Director system’s internal IP address and the LAN for H.323 support.

- From the RealPresence Access Director System to the LAN on page 57
- From the LAN to the RealPresence Access Director System on page 58
- From the RealPresence Access Director System to the LAN: H.323 B2B Calls on page 59
- From the LAN to the RealPresence Access Director System: H.323 B2B Calls on page 59

If your firewall has an H.323 function that enables it to intercept and alter H.323 messaging, for example, H.323 ALG, you must disable the service. If not disabled, the service may cause call failures due to re-writing of port or IP address information.

From the RealPresence Access Director System to the LAN

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPAD internal signaling IP address</td>
<td>*1719</td>
<td>UDP</td>
<td>IP address of LAN-based H.323 Gatekeeper (DMA system)</td>
<td>**1720</td>
<td>H.225 UDP connectivity from the RPAD system to the LAN-based H.323 gatekeeper (DMA system)</td>
</tr>
<tr>
<td>RPAD internal signaling IP address</td>
<td>(1) (10001 - 13000)</td>
<td>TCP</td>
<td>IP address of LAN-based H.323 Gatekeeper (DMA system)</td>
<td>**1720</td>
<td>H.225 TCP connectivity from the RPAD system to the LAN-based H.323 gatekeeper (DMA system)</td>
</tr>
<tr>
<td>RPAD internal signaling IP address</td>
<td>(1) (10001 - 13000)</td>
<td>TCP</td>
<td>IP address of LAN-based H.323 Gatekeeper (DMA system)</td>
<td>***36000 - 61000</td>
<td>H.245 TCP connectivity from RPAD to LAN-based H.323 gatekeeper (DMA system)</td>
</tr>
</tbody>
</table>
From the LAN to the RealPresence Access Director System

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>*1719</td>
<td>UDP</td>
<td>RPAD internal signaling IP address</td>
<td>1719</td>
<td>H.225 UDP connectivity from the LAN-based H.323 gatekeeper (DMA system) to the RPAD system</td>
</tr>
<tr>
<td>IP address of the LAN-based H.323 device</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD internal signaling IP address</td>
<td>1720</td>
<td>H.225 TCP connectivity from the LAN-based H.323 device to the RPAD system</td>
</tr>
<tr>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>**36000 - 61000</td>
<td>TCP</td>
<td>RPAD internal signaling IP address</td>
<td>(1) (10001 - 13000)</td>
<td>H.245 TCP connectivity from the LAN-based H.323 gatekeeper (DMA system) to the RPAD system</td>
</tr>
<tr>
<td>IP address of LAN-based H.323 endpoints or MCUs</td>
<td>>1023</td>
<td>UDP</td>
<td>RPAD internal media IP address</td>
<td>(5) (40002 - 50001)</td>
<td>Outbound RTP traffic from the LAN H.323 clients to the RPAD system</td>
</tr>
</tbody>
</table>

* 1719 is the default H.225 UDP port on a RealPresence DMA system, so this port must be the same on the RealPresence Access Director system.

** 36000-61000 is the H.245 port range on a RealPresence DMA system.
From the RealPresence Access Director System to the LAN: H.323 B2B Calls

If you use the RealPresence Access Director system for H.323 enterprise-to-enterprise calls, the ports listed in the tables below are required in addition to those listed in the preceding tables.

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPAD internal signaling IP address</td>
<td>1719</td>
<td>UDP</td>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>1719</td>
<td>Inbound H.225 UDP connectivity for B2B call scenarios</td>
</tr>
<tr>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>1719</td>
<td>UDP</td>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>1720</td>
<td>Outbound H.225 TCP connectivity for B2B call scenarios</td>
</tr>
<tr>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>36000 - 61000</td>
<td>TCP</td>
<td>RPAD internal signaling IP address</td>
<td>1720</td>
<td>Outbound H.225 TCP connectivity for B2B call scenarios</td>
</tr>
<tr>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>36000 - 61000</td>
<td>TCP</td>
<td>RPAD internal signaling IP address</td>
<td>(1) (10001 - 13000)</td>
<td>Outbound H.245 connectivity for B2B call scenarios</td>
</tr>
</tbody>
</table>

* SRC Port 1719 is the default H.225 UDP port on the local RealPresence Access Director system. If you change it on the local system, you must also change it accordingly on the firewall.

** DST Port 1719 is the default H.225 UDP port on a RealPresence DMA system, so this port must be the same on the RealPresence Access Director system.

From the LAN to the RealPresence Access Director System: H.323 B2B Calls

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>1719</td>
<td>UDP</td>
<td>RPAD internal signaling IP address</td>
<td>1719</td>
<td>Outbound H.225 UDP connectivity for B2B call scenarios</td>
</tr>
<tr>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>36000 - 61000</td>
<td>TCP</td>
<td>RPAD internal signaling IP address</td>
<td>1720</td>
<td>Outbound H.225 TCP connectivity for B2B call scenarios</td>
</tr>
<tr>
<td>IP address of the LAN-based H.323 gatekeeper (DMA system)</td>
<td>36000 - 61000</td>
<td>TCP</td>
<td>RPAD internal signaling IP address</td>
<td>(1) (10001 - 13000)</td>
<td>Outbound H.245 connectivity for B2B call scenarios</td>
</tr>
</tbody>
</table>

* SRC Port 1719 is the default H.225 UDP port on a RealPresence DMA system, so this port must be the same on the RealPresence Access Director system.

** DST Ports 1719 and 1720 are the default H.225 ports on the local RealPresence Access Director system. If you change the ports on the local system, you must also change them accordingly on the firewall.
SIP and WAN Ports

The following table describes the required ports for DMZ port-filtering policies between the RealPresence Access Director system’s public IP address and the WAN for SIP support.

- From the WAN to the RealPresence Access Director System on page 60
- From the RealPresence Access Director System to the WAN on page 61

If your firewall has a SIP function that enables it to intercept and alter SIP messaging (for example, SIP ALG), you must disable the service. If not disabled, the service may cause call failures due to rewriting of port or IP address information.

From the WAN to the RealPresence Access Director System

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of external SIP clients</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD public signaling IP address</td>
<td>*389</td>
<td>LDAP connectivity from the WAN to the RPAD system</td>
</tr>
<tr>
<td>IP address of external SIP clients</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD public signaling IP address</td>
<td>*443</td>
<td>HTTPS connectivity from the WAN to the RPAD system</td>
</tr>
<tr>
<td>IP address of external SIP clients</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD public signaling IP address</td>
<td>5222</td>
<td>XMPP connectivity from the WAN to the RPAD system</td>
</tr>
<tr>
<td>IP address of external SIP clients</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD public signaling IP address</td>
<td>**5060</td>
<td>SIP TCP connectivity from the WAN to the RPAD system</td>
</tr>
<tr>
<td>IP address of external SIP clients</td>
<td>>1023</td>
<td>UDP</td>
<td>RPAD public signaling IP address</td>
<td>**5060</td>
<td>SIP UDP connectivity from the WAN to the RPAD system</td>
</tr>
</tbody>
</table>
From the RealPresence Access Director System to the WAN

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of external SIP clients</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD public signaling IP address</td>
<td>5061</td>
<td>SIP TLS connectivity from the WAN to the RPAD system</td>
</tr>
<tr>
<td>IP address of external SIP clients</td>
<td>>1023</td>
<td>UDP</td>
<td>RPAD public media IP address</td>
<td>(4) (20002 - 30001)</td>
<td>Inbound RTP traffic transport from the WAN to the RPAD system</td>
</tr>
</tbody>
</table>

* Ports 65100 and 65101 by default are open and listening to support the access proxy process. The RealPresence Access Director system automatically redirects connections on port 443 to port 65100, and on port 389 to port 65101 to enable access proxy to function without root ownership of the process within the CentOS operating system.

** 5060 is the default SIP external listening port on the RealPresence Access Director system. If you change this external port or add other SIP external listening ports on the RealPresence Access Director system, the ports must also be changed or added on the firewall.
SIP and LAN Ports

The following table describes the required ports for DMZ port-filtering policies between the RealPresence Access Director’s system’s internal IP address and the LAN for SIP support with access proxy.

- From the RealPresence Access Director System to the LAN on page 62
- From the LAN to the RealPresence Access Director System on page 63

If your firewall has a SIP function that enables it to intercept and alter SIP messaging (for example, SIP ALG), you must disable the service. Failure to disable the service may cause call failures due to rewriting of port or IP address information.

From the RealPresence Access Director System to the LAN

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPAD internal signaling IP address</td>
<td>(2) (13001 - 15000)</td>
<td>TCP</td>
<td>IP address of the LAN-based SIP registrar (DMA system)</td>
<td>*5060 - 5061</td>
<td>SIP TCP (5060) and SIP TLS (5061) connectivity from the RPAD system to the LAN-based SIP registrar (DMA system)</td>
</tr>
<tr>
<td>RPAD internal signaling IP address</td>
<td>**5070</td>
<td>UDP</td>
<td>IP address of the LAN-based SIP registrar (DMA system)</td>
<td>*5060</td>
<td>SIP UDP connectivity from the RPAD system to the LAN-based SIP registrar (DMA system)</td>
</tr>
<tr>
<td>RPAD internal signaling IP address</td>
<td>(3) (30001 - 60000)</td>
<td>TCP</td>
<td>IP address of the LAN-based provisioning server (RealPresence Resource Manager system)</td>
<td>443</td>
<td>HTTPS connectivity from the RPAD system to the LAN-based provisioning server</td>
</tr>
</tbody>
</table>
From the LAN to the RealPresence Access Director System

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP address of the LAN-based SIP registrar (DMA system)</td>
<td>*5060</td>
<td>UDP</td>
<td>RPAD internal signaling IP address</td>
<td>**5070</td>
<td>SIP UDP connectivity from the LAN-based SIP registrar (DMA system) to the RPAD system</td>
</tr>
<tr>
<td>IP address of the LAN-based SIP registrar (DMA system)</td>
<td>>1023</td>
<td>TCP</td>
<td>RPAD internal signaling IP address</td>
<td>**5070 - 5071</td>
<td>SIP TCP connectivity from the LAN-based SIP registrar (DMA system) to the RPAD system</td>
</tr>
</tbody>
</table>
Two-box Tunnel Communication Ports

From the RealPresence Access Director System Tunnel Server (DMZ) to the Tunnel Client (LAN)

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
</table>
| RPAD local tunnel IP address | *1194
(RPAD local tunnel port) | UDP | RPAD remote tunnel IP address | 1194
(RPAD remote tunnel port) | Connectivity between the RPAD tunnel server and the RPAD tunnel client |

* 1194 is the default port for the RealPresence Access Director system local tunnel server and tunnel client.

From the RealPresence Access Director System Tunnel Client (LAN) to the Tunnel Server (DMZ)

<table>
<thead>
<tr>
<th>SRC IP</th>
<th>SRC Port</th>
<th>Protocol</th>
<th>DST IP</th>
<th>DST Port</th>
<th>Description</th>
</tr>
</thead>
</table>
| RPAD local tunnel IP address | *1194
(RPAD local tunnel port) | UDP | RPAD remote tunnel IP address | 1194
(RPAD remote tunnel port) | Connectivity between the RPAD tunnel client and the RPAD tunnel server |

* 1194 is the default port for the RealPresence Access Director system local tunnel server and tunnel client.
Comparison of Two-box Tunnel Deployment and Standard Deployment Ports

From the WAN to the RealPresence Access Director System and the RealPresence Access Director System to the WAN.

<table>
<thead>
<tr>
<th>From the WAN to the Tunnel Server</th>
<th>From the Tunnel Server to the WAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Ports</td>
<td>Management Ports</td>
</tr>
<tr>
<td>• The port range is the same for two-box tunnel and standard deployments (see Management Ports on page 49, From the WAN to the RealPresence Access Director System on page 49)</td>
<td>• The port range is the same for two-box tunnel and standard deployments (see Management Ports on page 49, From the RealPresence Access Director System to the WAN on page 50)</td>
</tr>
<tr>
<td>H323 Ports</td>
<td>H323 Ports</td>
</tr>
<tr>
<td>• The port range is the same for two-box tunnel and standard deployments (see H.323 and WAN Ports on page 52, From the WAN to the RealPresence Access Director System on page 52)</td>
<td>• The port range is the same for two-box tunnel and standard deployments (see H.323 and WAN Ports on page 52, From the Real Presence Access Director System to the WAN on page 53)</td>
</tr>
<tr>
<td>SIP Ports</td>
<td>SIP Ports</td>
</tr>
<tr>
<td>• The port range is the same for two-box tunnel and standard deployments (see SIP and WAN Ports on page 60, From the WAN to the RealPresence Access Director System on page 60)</td>
<td>• The port range is the same for two-box tunnel and standard deployments (see SIP and WAN Ports on page 60, From the RealPresence Access Director System to the WAN on page 61)</td>
</tr>
</tbody>
</table>

From the LAN to the RealPresence Access Director System and the RealPresence Access Director System to the LAN.

<table>
<thead>
<tr>
<th>From the LAN to the Tunnel Client</th>
<th>From the Tunnel Client to the LAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Management Ports</td>
<td>Management Ports</td>
</tr>
<tr>
<td>• The port range is the same for two-box tunnel and standard deployments (see Management Ports on page 49, From the LAN to the RealPresence Access Director System on page 50)</td>
<td>• The port range is the same for two-box tunnel and standard deployments (see Management Ports on page 49, From the RealPresence Access Director System to the LAN on page 51)</td>
</tr>
<tr>
<td>Tunnel Port</td>
<td>Tunnel Port</td>
</tr>
<tr>
<td>• Default is 1194 (see From the RealPresence Access Director System Tunnel Server (DMZ) to the Tunnel Client (LAN) on page 64)</td>
<td>• Default is 1194 (see From the RealPresence Access Director System Tunnel Client (LAN) to the Tunnel Server (DMZ) on page 64)</td>
</tr>
</tbody>
</table>
Network Interface Configurations

This chapter provides illustrations and network interface configuration details for the different RealPresence Access Director system deployment models.

- Single Firewall Deployment with One Network Interface on page 66
- DMZ Deployment with One or More Network Interfaces on page 67
- Two-box Tunnel Deployment on page 68

Single Firewall Deployment with One Network Interface

The RealPresence Access Director system with one network interface card (NIC) is deployed at the DMZ of the single outside firewall. All signaling, media, and management traffic use one network interface and IP address.
All communication services are configured for one network interface card and IP address, as shown in the following table.

<table>
<thead>
<tr>
<th>Number of NICs</th>
<th>Name of Interface</th>
<th>Assigned Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>eth0</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External access proxy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal access proxy</td>
</tr>
</tbody>
</table>

DMZ Deployment with One or More Network Interfaces

When a RealPresence Access Director system with one network interface card is deployed in the enterprise DMZ (between two physical firewalls), all traffic uses one network interface and IP address.

If the RealPresence Access Director system with at least two network interfaces is deployed in the enterprise DMZ, both signaling and media services can be assigned to different interfaces for internal and external traffic. The figure below shows deployment in the enterprise DMZ, between two physical firewalls.

The following table lists the recommended network interface settings for the different communication services, based on the number of network interfaces you use. **Note that up to four network interfaces can be assigned as an external access proxy IP address. The table below includes the recommended configuration if you assign only one network interface as the external access proxy IP address.**

<table>
<thead>
<tr>
<th>Number of NICs</th>
<th>Name of Interface</th>
<th>Assigned Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>eth0</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External Signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External Media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal Media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External access proxy</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal access proxy</td>
</tr>
</tbody>
</table>
Two-box Tunnel Deployment

In a two-box tunnel deployment, two RealPresence Access Director systems can be deployed to tunnel traffic to and from the inside network. In this model, one system with one to four network interfaces is deployed in the corporate back-to-back DMZ and acts as the tunnel server. The other system with one to two network interfaces is deployed behind the inside firewall and acts as the tunnel client.

The tunnel server can forward all traffic through one open port on the inside firewall. If necessary, based on the firewall policy, the tunnel client can also send all traffic through one open port on the inside firewall.

Table

<table>
<thead>
<tr>
<th>Number of NICs</th>
<th>Name of Interface</th>
<th>Assigned Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>eth0</td>
<td>Management, Internal signaling, Internal media, Internal access proxy</td>
</tr>
<tr>
<td></td>
<td>eth1</td>
<td>External signaling, External media, External access proxy</td>
</tr>
<tr>
<td>3</td>
<td>eth0</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>eth1</td>
<td>Internal signaling, Internal media, Internal access proxy</td>
</tr>
<tr>
<td></td>
<td>eth2</td>
<td>External signaling, External media, External access proxy</td>
</tr>
<tr>
<td>4</td>
<td>eth0</td>
<td>Management, Internal signaling, Internal access proxy</td>
</tr>
<tr>
<td></td>
<td>eth1</td>
<td>Internal media</td>
</tr>
<tr>
<td></td>
<td>eth2</td>
<td>External signaling, External access proxy</td>
</tr>
<tr>
<td></td>
<td>eth3</td>
<td>External media</td>
</tr>
</tbody>
</table>

Polycom RealPresence Access Director System Deployment Guide
The figure below illustrates a two-box tunnel deployment.

Tunnel Server Network Interface Configuration

The following table lists the recommended tunnel server network interface settings for the different communication services, including communication between the tunnel server and tunnel client. While the table lists only one interface for external access proxy traffic, up to four network interfaces can be assigned for external access proxy traffic.

On the tunnel server, the network interface assigned to tunnel communication is the IP address and port number of the remote tunnel client.

<table>
<thead>
<tr>
<th>Number of NICs</th>
<th>Name of Interface</th>
<th>Assigned Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>eth0</td>
<td>Two-box tunnel communication, management, external signaling, external media, external access proxy</td>
</tr>
<tr>
<td>2</td>
<td>eth0</td>
<td>Two-box tunnel communication and management</td>
</tr>
<tr>
<td></td>
<td>eth1</td>
<td>External signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External access proxy</td>
</tr>
<tr>
<td>3</td>
<td>eth0</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>eth1</td>
<td>External signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External access proxy</td>
</tr>
<tr>
<td>4</td>
<td>eth0</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>eth1</td>
<td>External signaling</td>
</tr>
<tr>
<td></td>
<td></td>
<td>External access proxy</td>
</tr>
<tr>
<td>3</td>
<td>eth2</td>
<td>Two-box tunnel communication</td>
</tr>
<tr>
<td></td>
<td>eth3</td>
<td>Two-box tunnel communication</td>
</tr>
</tbody>
</table>
Tunnel Client Network Interface Configuration

The following table lists the recommended tunnel client network interface settings for the different communication services, including communication between the tunnel server and tunnel client.

On the tunnel client, the network interface assigned to tunnel communication is the IP address and port number of the remote tunnel server.

<table>
<thead>
<tr>
<th>Number of NICs</th>
<th>Name of Interface</th>
<th>Assigned Traffic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>eth0</td>
<td>Two-box tunnel communication, management, internal signaling, internal media, internal access proxy</td>
</tr>
<tr>
<td>2</td>
<td>eth0</td>
<td>Two-box tunnel communication</td>
</tr>
<tr>
<td></td>
<td>eth1</td>
<td>Management, Internal signaling, Internal media, Internal access proxy</td>
</tr>
<tr>
<td>3</td>
<td>eth0</td>
<td>Management</td>
</tr>
<tr>
<td></td>
<td>eth1</td>
<td>Internal signaling, Internal media, Internal access proxy</td>
</tr>
<tr>
<td></td>
<td>eth2</td>
<td>Two-box tunnel communication</td>
</tr>
</tbody>
</table>